Theoretical Fluid Dynamics

Specificaties
Paperback, blz. | Engels
Springer International Publishing | e druk, 2021
ISBN13: 9783030310240
Rubricering
Springer International Publishing e druk, 2021 9783030310240
Verwachte levertijd ongeveer 8 werkdagen

Samenvatting

This textbook gives an introduction to fluid dynamics based on flows for which analytical solutions exist, like individual vortices, vortex streets, vortex sheets, accretions disks, wakes, jets, cavities, shallow water waves, bores, tides, linear and non-linear free-surface waves, capillary waves, internal gravity waves and shocks.

Advanced mathematical techniques ("calculus") are introduced and applied to obtain these solutions, mostly from complex function theory (Schwarz-Christoffel theorem and Wiener-Hopf technique), exterior calculus, singularity theory, asymptotic analysis, the theory of linear and nonlinear integral equations and the theory of characteristics.

Many of the derivations, so far contained only in research journals, are made available here to a wider public.

Specificaties

ISBN13:9783030310240
Taal:Engels
Bindwijze:paperback
Uitgever:Springer International Publishing

Inhoudsopgave

<div>1 Description of fluids 5</div><div>1.1 Euler and Lagrange picture . . . . . . . . . . . . . . . . . . . . 5</div><div>1.2 Lagrange derivative . . . . . . . . . . . . . . . . . . . . . . . . . 6</div><div>1.3 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . 8</div><div>1.4 Divergence-free vector field . . . . . . . . . . . . . . . . . . . . 10</div><div>1.5 Fluid boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 12</div><div>1.6 Phase space fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . 15</div><div>1.7 Moving fluid line . . . . . . . . . . . . . . . . . . . . . . . . . . . 16</div><div>1.8 Internal fluid stress . . . . . . . . . . . . . . . . . . . . . . . . . 18</div><div>1.9 Fluid equations from kinetic theory . . . . . . . . . . . . . . . 29</div><div>1.10 Streamlines and Pathlines . . . . . . . . . . . . . . . . . . . . . 32</div>1.11 Vortex line, vortex tube and line vortex . . . . . . . . . . . . . 33<div>1.12 Vortex sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37</div><div>1.13 Vector gradient in cylindrical coordinates . . . . . . . . . . . . 39</div><div>1.14 Vector gradient in orthogonal coordinates . . . . . . . . . . . . 41</div><div>1.15 Vorticity equation . . . . . . . . . . . . . . . . . . . . . . . . . . 45</div><div>1.16 Velocity from vorticity . . . . . . . . . . . . . . . . . . . . . . . . 47</div><div>1.17 Bernoulli equation . . . . . . . . . . . . . . . . . . . . . . . . . . 50</div><div>1.18 Euler-Lagrange equation for fluids . . . . . . . . . . . . . . . . 52</div><div>1.19 Water waves from Euler-Lagrange equations . . . . . . . . . . 58</div><div>1.20 Stretching in an isotropic random velocity field . . . . . . . . 63</div><div>1.21 Converse Poincaré lemma . . . . . . . . . . . . . . . . . . . . . 65</div><div><br></div><div>2 Flows in the complex plane 79</div><div>2.1 Laplace equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79</div><div>2.2 Green’s theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 81</div><div>2.3 Dirichlet and Neumann boundary conditions . . . . . . . . . . 82</div><div>2.4 Mean value and maximum property . . . . . . . . . . . . . . . 83</div>2.5 Logarithmic potential . . . . . . . . . . . . . . . . . . . . . . . . 85<div>2.6 Dirichlet’s principle . . . . . . . . . . . . . . . . . . . . . . . . . 88</div><div>2.7 Streamfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92</div><div>2.8 Vorticity on a sphere . . . . . . . . . . . . . . . . . . . . . . . . . 94</div><div>2.9 Complex speed and potential . . . . . . . . . . . . . . . . . . . 96</div><div>2.10 Analytic functions, conformal transformation . . . . . . . . . 98</div><div>2.11 Schwarz-Christoffel theorem . . . . . . . . . . . . . . . . . . . . 100</div><div>2.12 Mapping of semi-infinite and infinite strips . . . . . . . . . . . 106</div><div>2.13 Riemann surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 108</div><div><br></div><div>3 Vortices, corner flow and flow past plates 117</div><div>3.1 Straight vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117</div><div>3.2 Corner flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120</div><div>3.3 Corner flow with viscosity . . . . . . . . . . . . . . . . . . . . . 122</div><div>3.4 Flow past a flat plate . . . . . . . . . . . . . . . . . . . . . . . . 129</div><div>3.5 Blasius and Kutta-Jukowski theorems . . . . . . . . . . . . . . 132</div><div>3.6 Plane flow past a cylinder . . . . . . . . . . . . . . . . . . . . . 135</div><div>3.7 Kármán vortex street . . . . . . . . . . . . . . . . . . . . . . . . 137</div><div>3.8 Corner eddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150</div><div>3.9 Angular momentum transport . . . . . . . . . . . . . . . . . . . 155</div><div><br></div><div>4 Jets, wakes and cavities 163</div><div>4.1 Free streamlines . . . . . . . . . . . . . . . . . . . . . . . . . . . 163</div>4.2 Flow past a step . . . . . . . . . . . . . . . . . . . . . . . . . . . 167<div>4.3 Complex potential and speed plane . . . . . . . . . . . . . . . . 169</div><div>4.4 Outflow from an orifice . . . . . . . . . . . . . . . . . . . . . . . 170</div><div>4.5 A simple wake model . . . . . . . . . . . . . . . . . . . . . . . . 175</div><div>4.6 Riabouchinsky cavity . . . . . . . . . . . . . . . . . . . . . . . . 181</div><div>4.7 Levi-Civita method . . . . . . . . . . . . . . . . . . . . . . . . . 185</div><div>4.8 Kolscher’s cusped cavity . . . . . . . . . . . . . . . . . . . . . . 188</div><div>4.9 Re-entrant jet cavity . . . . . . . . . . . . . . . . . . . . . . . . . 197</div><div>4.10 Tilted wedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198</div><div>4.11 Weinstein theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 205</div><div><br></div><div>5 Kelvin-Helmholtz instability 211</div><div>5.1 Kelvin-Helmholtz circulation theorem . . . . . . . . . . . . . . 211</div><div>5.2 Bjerknes circulation theorem . . . . . . . . . . . . . . . . . . . 217</div><div>5.3 Kelvin-Helmholtz instability . . . . . . . . . . . . . . . . . . . . 220</div><div>5.4 Vortex chain perturbation . . . . . . . . . . . . . . . . . . . . . 222</div><div>5.5 Vortex accumulation . . . . . . . . . . . . . . . . . . . . . . . . . 226</div><div>5.6 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . 230</div><div>5.7 Birkhoff-Rott equation for vortex sheets . . . . . . . . . . . . . 235</div><div>5.8 Curvature singularity in evolving vortex sheet . . . . . . . . . 239</div><div>5.9 Subsequent work on Moore’s singularity . . . . . . . . . . . . 254</div><div>5.10 Nonlinear stages of K-H instability . . . . . . . . . . . . . . . . 257</div><div>5.11 Why do large eddies occur in fast flows? . . . . . . . . . . . . . 259</div><div>5.12 Atmospheric instability . . . . . . . . . . . . . . . . . . . . . . . 262</div><div>5.13 Rayleigh inflexion theorem . . . . . . . . . . . . . . . . . . . . . 264</div><div>5.14 Kinematics of vortex rings . . . . . . . . . . . . . . . . . . . . . 266</div><div>5.15 Curvature and torsion . . . . . . . . . . . . . . . . . . . . . . . . 269</div><div>5.16 Helical line vortices . . . . . . . . . . . . . . . . . . . . . . . . . 271</div><div>5.17 Knotted and linked vortex rings . . . . . . . . . . . . . . . . . . 274</div><div>5.18 Clebsch coordinates and knottedness . . . . . . . . . . . . . . . 278</div><div><br></div><div>6 Kinematics of waves 279</div><div>6.1 Wave basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280</div><div>6.2 Group speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281</div><div>6.3 Kinematic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 286</div><div>6.4 The wavefront . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287</div><div>6.5 Waves and instability from a radiative force . . . . . . . . . . 289</div><div><br></div><div>7 Shallow water waves 299</div><div>7.1 Continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . 300</div>7.2 Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303<div>7.3 Wave equation for linear water waves . . . . . . . . . . . . . . 304</div><div>7.4 Tides in canals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307</div><div>7.5 Cotidal lines and amphidromic points . . . . . . . . . . . . . . 312</div><div>7.6 Waves of finite amplitude . . . . . . . . . . . . . . . . . . . . . . 317</div><div>7.7 Nonlinear tides in an estuary . . . . . . . . . . . . . . . . . . . 321</div><div>7.8 Similarity solution: dam break . . . . . . . . . . . . . . . . . . 329</div><div>7.9 Non-breaking waves . . . . . . . . . . . . . . . . . . . . . . . . . 334</div><div>7.10 Bores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340</div><div>7.11 Poincaré and Kelvin waves . . . . . . . . . . . . . . . . . . . . . 348</div><div>7.12 Wave behind a barrier . . . . . . . . . . . . . . . . . . . . . . . . 353</div><div><br></div><div>8 Free surface waves 373</div><div>8.1 Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . 374</div><div>8.2 Sudden impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . 377</div><div>8.3 Refraction and breaking at a coast . . . . . . . . . . . . . . . . 383</div><div>8.4 Waves in a non-uniform stream . . . . . . . . . . . . . . . . . . 392</div>8.5 Stokes wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402<div>8.6 Stokes singularity . . . . . . . . . . . . . . . . . . . . . . . . . . 409</div><div>8.7 Crapper wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416</div><div><br></div><div>9 Existence proof for weakly nonlinear water waves 427</div><div>9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427</div><div>9.2 Boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . 429</div><div>9.3 Linear integral equations . . . . . . . . . . . . . . . . . . . . . . 430</div><div>9.4 Schmidt’s nonlinear integral equation . . . . . . . . . . . . . . 441</div><div>9.5 General nonlinear integral equations . . . . . . . . . . . . . . 447</div><div>9.6 Integral equations for nonlinear waves . . . . . . . . . . . . . 449</div><div><br></div>10 Sound and internal gravity waves 463<div>10.1 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463</div><div>10.2 Acoustic cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466</div><div>10.3 Schwarzschild criterion . . . . . . . . . . . . . . . . . . . . . . . 470</div><div>10.4 Gravo-acoustic waves . . . . . . . . . . . . . . . . . . . . . . . . 473</div><div><br></div>11 Supersonic flow and shocks 479<div>11.1 Shock kinematics and entropy . . . . . . . . . . . . . . . . . . . 479</div><div>11.2 Jump conditions at shocks . . . . . . . . . . . . . . . . . . . . . 484</div><div>11.3 Shock speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491</div><div>11.4 Shock entropy and supersonic inflow . . . . . . . . . . . . . . . 492</div><div>11.5 Laval nozzle and solar wind . . . . . . . . . . . . . . . . . . . . 493</div><div>11.6 Supersonic spots . . . . . . . . . . . . . . . . . . . . . . . . . . . 499</div><div>11.7 Solar wind exhibiting a shock pair . . . . . . . . . . . . . . . . 509</div><div>11.8 Riemann sheets for the Burgers equation . . . . . . . . . . . . 514</div><div>11.9 Characteristics for first-order equations . . . . . . . . . . . . . 520</div><div>11.10Characteristics for second-order equations . . . . . . . . . . . 527</div>11.11Derivatives on characteristics . . . . . . . . . . . . . . . . . . . 529<div>11.12Simple waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533</div><div><br></div><div>A Analytic and meromorphic functions 541</div>

Rubrieken

    Personen

      Trefwoorden

        Theoretical Fluid Dynamics