From Smart Grids to Smart Cities: New Challenges i n Optimizing Energy Grids

New Challenges in Optimizing Energy Grids

Specificaties
Gebonden, 368 blz. | Engels
John Wiley & Sons | e druk, 2017
ISBN13: 9781848217492
Rubricering
John Wiley & Sons e druk, 2017 9781848217492
€ 191,18
Levertijd ongeveer 8 werkdagen

Samenvatting

This book addresses different algorithms and applications based on the theory of multiobjective goal attainment optimization. In detail the authors show as the optimal asset of the energy hubs network which (i) meets the loads, (ii) minimizes the energy costs and (iii) assures a robust and reliable operation of the multicarrier energy network can be formalized by a nonlinear constrained multiobjective optimization problem. Since these design objectives conflict with each other, the solution of such the optimal energy flow problem hasn t got a unique solution and a suitable trade off between the objectives should be identified. A further contribution of the book consists in presenting real–world applications and results of the proposed methodologies  developed by the authors in  three research projects recently completed and characterized by actual implementation under an overall budget of about 23 million .

Specificaties

ISBN13:9781848217492
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:368

Inhoudsopgave

<p>Preface&nbsp; xi</p>
<p>Introduction xvii<br />Massimo LA SCALA and Sergio BRUNO</p>
<p>Chapter 1. Unbalanced Three–Phase Optimal Power Flow for the Optimization of MV and LV Distribution Grids 1<br />Sergio BRUNO and Massimo LA SCALA</p>
<p>1.1. Advanced distribution management system for smart distribution grids&nbsp; 1</p>
<p>1.2. Secondary distribution monitoring and control 5</p>
<p>1.2.1. Monitoring and representation of LV distribution grids&nbsp; 6</p>
<p>1.2.2. LV control resources and control architecture 7</p>
<p>1.3. Three–phase distribution optimal power flow for smart distribution grids&nbsp; 8</p>
<p>1.4. Problem formulation and solving algorithm 11</p>
<p>1.4.1. Main problem formulation&nbsp; 11</p>
<p>1.4.2. Application of the penalty method 12</p>
<p>1.4.3. Definition of an unconstrained problem&nbsp; 14</p>
<p>1.4.4. Application of a quasi–Newton method 15</p>
<p>1.4.5. Solving algorithm 18</p>
<p>1.5. Application of the proposed methodology to the optimization of a MV network&nbsp; 20</p>
<p>1.5.1. Case A: optimal load curtailment&nbsp; 23</p>
<p>1.5.2. Case B: conservative voltage regulation&nbsp; 26</p>
<p>1.5.3. Case C: voltage rise effects 28</p>
<p>1.5.4. Algorithm performance&nbsp; 30</p>
<p>1.6. Application of the proposed methodology to the optimization of a MV/LV network&nbsp; 31</p>
<p>1.6.1. Case D: LV network congestions&nbsp; 33</p>
<p>1.6.2. Case E: minimization of losses and reactive control&nbsp; 36</p>
<p>1.6.3. Algorithm performance&nbsp; 37</p>
<p>1.7. Conclusions&nbsp; 38</p>
<p>1.8. Acknowledgments 38</p>
<p>1.9. Bibliography&nbsp; 39</p>
<p>Chapter 2. Mixed Integer Linear Programming Models for Network Reconfiguration and Resource Optimization in Power Distribution Networks 43<br />Alberto BORGHETTI</p>
<p>2.1. Introduction&nbsp; 43</p>
<p>2.2. Model for determining the optimal configuration of a radial distribution network&nbsp; 44</p>
<p>2.2.1. Objective function and constraints of the branch currents 46</p>
<p>2.2.2. Bus voltage constraints&nbsp; 48</p>
<p>2.2.3. Bus equations 50</p>
<p>2.2.4. Line equations 52</p>
<p>2.2.5. Radiality constraints 53</p>
<p>2.3. Test results of minimum loss configuration obtained by the MILP model 54</p>
<p>2.3.1. Illustrative example&nbsp; 54</p>
<p>2.3.2. Tests results for networks with several nodes and branches&nbsp; 57</p>
<p>2.3.3. Comparison between the MILP solutions for the test networks with the corresponding PF calculation results relevant to the obtained optimal network configurations&nbsp; 62</p>
<p>2.4. MILP model of the VVO problem&nbsp; 65</p>
<p>2.4.1. Objective function&nbsp; 66</p>
<p>2.4.2. Branch equations 67</p>
<p>2.4.3. Bus equations 69</p>
<p>2.4.4. Branch and node constraints 72</p>
<p>2.5. Test results obtained by the VVO MILP model 74</p>
<p>2.5.1. TS1 74</p>
<p>2.5.2. TS2 77</p>
<p>2.5.3. TS3 78</p>
<p>2.6. Conclusions&nbsp; 85</p>
<p>2.7. Acknowledgments 85</p>
<p>2.8. Bibliography&nbsp; 86</p>
<p>Chapter 3. The Role of Nature–inspired Metaheuristic Algorithms for Optimal Voltage Regulation in Urban Smart Grids 89<br />Giovanni ACAMPORA, Davide CARUSO, Alfredo VACCARO, Autilia VITIELLO and Ahmed F. ZOBAA</p>
<p>3.1. Introduction&nbsp; 89</p>
<p>3.2. Emerging needs in urban power systems&nbsp; 92</p>
<p>3.3. Toward smarter grids 93</p>
<p>3.4. Smart grids optimization 97</p>
<p>3.5. Metaheuristic algorithms for smart grids optimization 99</p>
<p>3.5.1. Genetic algorithm 99</p>
<p>3.5.2. Random Hill Climbing algorithm&nbsp; 101</p>
<p>3.5.3. Particle Swarm Optimization algorithm&nbsp; 101</p>
<p>3.5.4. Evolution strategy 103</p>
<p>3.5.5. Differential evolution 106</p>
<p>3.5.6. Biogeography–based optimization&nbsp; 108</p>
<p>3.5.7. Evolutionary programming 109</p>
<p>3.5.8. Ant Colony Optimization algorithm 110</p>
<p>3.5.9. Group Search Optimization algorithm 113</p>
<p>3.6. Numerical results 115</p>
<p>3.6.1. Power system test 116</p>
<p>3.6.2. Real urban smart grid 124</p>
<p>3.7. Conclusions&nbsp; 127</p>
<p>3.8. Bibliography&nbsp; 127</p>
<p>Chapter 4. Urban Energy Hubs and Microgrids: Smart Energy Planning for Cities&nbsp; 129<br />Eleonora RIVA SANSEVERINO, Vincenzo Domenico GENCO, Gianluca SCACCIANOCE, Valentina VACCARO, Raffaella RIVA SANSEVERINO, Gaetano ZIZZO, Maria Luisa DI SILVESTRE, Diego ARNONE and Giuseppe PATERN&Ograve;</p>
<p>4.1. Introduction&nbsp; 129</p>
<p>4.1.1. Microgrids versus urban energy hubs&nbsp; 131</p>
<p>4.2. Approaches and tools for urban energy hubs&nbsp; 134</p>
<p>4.2.1. Policy 134</p>
<p>4.2.2. Analysis&nbsp; 135</p>
<p>4.2.3. Optimal design and operation tools 139</p>
<p>4.3. Methodology&nbsp; 143</p>
<p>4.3.1. Building type and urban energy parameter specification 143</p>
<p>4.3.2. Mobility simulator&nbsp; 147</p>
<p>4.3.3. Energy simulation and electrical load estimation for buildings&nbsp; 151</p>
<p>4.3.4. Optimization and simulation software for district 151</p>
<p>4.4. Application 152</p>
<p>4.4.1. Analysis&nbsp; 152</p>
<p>4.4.2. Simulations and optimization&nbsp; 160</p>
<p>4.4.3. Mobility and effects of policies and smart charging on peaking power&nbsp; 168</p>
<p>4.5. Conclusions&nbsp; 170</p>
<p>4.6 Bibliography&nbsp; 171</p>
<p>Chapter 5. Optimization of Multi–energy Carrier Systems in Urban Areas 177<br />Sergio BRUNO, Silvia LAMONACA and Massimo LA SCALA</p>
<p>5.1. Introduction&nbsp; 177</p>
<p>5.2. Optimal control strategy for a small–scale multi–carrier energy system&nbsp; 180</p>
<p>5.2.1. The proposed architecture&nbsp; 180</p>
<p>5.2.2. Mathematical formulation&nbsp; 183</p>
<p>5.2.3. Test results 190</p>
<p>5.3. Optimal design of an urban energy district 198</p>
<p>5.3.1. Energy district for urban regeneration: the San Paolo Power Park&nbsp; 199</p>
<p>5.3.2. Optimal design of the energy district&nbsp; 201</p>
<p>5.3.3. Integer variables and design choices&nbsp; 205</p>
<p>5.3.4. Mathematical formulation of the optimal control problem&nbsp; 206</p>
<p>5.3.5. Test results 214</p>
<p>5.4. Conclusions&nbsp; 227</p>
<p>5.5. Acknowledgments 228</p>
<p>5.6. Bibliography&nbsp; 228</p>
<p>Chapter 6. Optimal Gas Flow Algorithm for Natural Gas Distribution Systems in Urban Environment 231<br />Ugo STECCHI, Gaetano ABBATANTUONO and Massimo LA SCALA</p>
<p>6.1. Introduction&nbsp; 231</p>
<p>6.2. Natural gas network evolution&nbsp; 236</p>
<p>6.3. Implementing the monitoring and control system in the Gas Smart Grids pilot project&nbsp; 239</p>
<p>6.3.1. SCADA system&nbsp; 240</p>
<p>6.3.2. Controlling FRUs setpoints 244</p>
<p>6.4. Basic equations under steady–state conditions 246</p>
<p>6.5. Gas load flow formulation&nbsp; 253</p>
<p>6.6. Gas optimal flow method 256</p>
<p>6.7. Optimizing turbo–expander operations&nbsp; 258</p>
<p>6.8. Optimizing pressure profiles on the low pressure distribution grids 262</p>
<p>6.9. Conclusions&nbsp; 270</p>
<p>6.10. Acknowledgements 270</p>
<p>6.11. Bibliography 270</p>
<p>Chapter 7. Multicarrier Energy System Optimal Power Flow 273<br />Soheil DERAFSHI BEIGVAND, Hamdi ABDI and Massimo LA SCALA</p>
<p>7.1. Introduction&nbsp; 273</p>
<p>7.2. Basic concepts and assumptions 276</p>
<p>7.2.1. MEC and energy hub 276</p>
<p>7.2.2. CHP units 279</p>
<p>7.2.3. General assumptions 282</p>
<p>7.3. Problem formulation&nbsp; 283</p>
<p>7.3.1. Electrical power balance equations 283</p>
<p>7.3.2. Gas energy flow equation&nbsp; 283</p>
<p>7.3.3. Modeling of energy hubs 285</p>
<p>7.3.4. MECOPF problem&nbsp; 286</p>
<p>7.4. Time varying acceleration coefficient gravitational search algorithm&nbsp; 287</p>
<p>7.4.1. A brief comparison between the main structures of TVAC–GSA and PSO&nbsp; 291</p>
<p>7.5. TVAC–GSA–based MECOPF problem 292</p>
<p>7.6. Case study simulations and results&nbsp; 294</p>
<p>7.7. Conclusions&nbsp; 300</p>
<p>7.8. Appendix 1 301</p>
<p>7.9. Appendix 2 303</p>
<p>7.10. Bibliography 305</p>
<p>List of Authors 309</p>
<p>Index 311</p>
€ 191,18
Levertijd ongeveer 8 werkdagen

Rubrieken

    Personen

      Trefwoorden

        From Smart Grids to Smart Cities: New Challenges i n Optimizing Energy Grids