Interdisciplinary Mechatronics – Engineering Science and Research Development

Engineering Science and Research Development

Specificaties
Gebonden, 620 blz. | Engels
John Wiley & Sons | e druk, 2013
ISBN13: 9781848214187
Rubricering
John Wiley & Sons e druk, 2013 9781848214187
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

Mechatronics represents a unifying interdisciplinary and intelligent engineering science paradigm that features an interdisciplinary knowledge area and interactions in terms of the ways of work and thinking, practical experiences, and theoretical knowledge. Mechatronics successfully fuses (but is not limited to) mechanics, electrical, electronics, informatics and intelligent systems, intelligent control systems and advanced modeling, intelligent and autonomous robotic systems, optics, smart materials, actuators and biomedical and biomechanics, energy and sustainable development, systems engineering, artificial intelligence, intelligent computer control, computational intelligence, precision engineering and virtual modeling into a unified framework that enhances the design of products and manufacturing processes.
Interdisciplinary Mechatronics concerns mastering a multitude of disciplines, technologies, and their interaction, whereas the science of mechatronics concerns the invention and development of new theories, models, concepts and tools in response to new needs evolving from interacting scientific disciplines. The book includes two sections, the first section includes chapters introducing research advances in mechatronics engineering, and the second section includes chapters that reflects the teaching approaches (theoretical, projects, and laboratories) and curriculum development for under– and postgraduate studies. Mechatronics engineering education focuses on producing engineers who can work in a high–technology environment, emphasize real–world hands–on experience, and engage in challenging problems and complex tasks with initiative, innovation and enthusiasm.

Contents:

1. Interdisciplinary Mechatronics Engineering Science and the Evolution of Human Friendly and Adaptive Mechatronics, Maki K. Habib.
2. Micro–Nanomechatronics for Biological Cell Analysis and Assembly, Toshio Fukuda, Masahiro Nakajima, Masaru Takeuchi, Tao Yue and Hirotaka Tajima.
3. Biologically Inspired CPG–Based Locomotion Control System of a Biped Robot Using Nonlinear Oscillators with Phase Resetting, Shinya Aoi.
4. Modeling a Human s Learning Processes toward Continuous Learning Support System, Tomohiro Yamaguchi, Kouki Takemori and Keiki Takadama.
5. PWM Waveform Generation Using Pulse–Type Hardware Neural Networks, Ken Saito, Minami Takato, Yoshifumi Sekine and Fumio Uchikoba.
6. Parallel Wrists: Limb Types, Singularities and New Perspectives, Raffaele Di Gregorio.
7. A Robot–Assisted Rehabilitation System RehabRoby, Duygun Erol Barkana and Fatih Özkul.
8. MIMO Actuator Force Control of a Parallel Robot for Ankle Rehabilitation, Andrew Mcdaid, Yun Ho Tsoi and Shengquan Xie.
9. Performance Evaluation of a Probe Climber for Maintaining Wire Rope, Akihisa Tabata, Emiko Hara and Yoshio Aoki.
10. Fundamentals on the Use of Shape Memory Alloys in Soft Robotics, Matteo Cianchetti.
11. Tuned Modified Transpose Jacobian Control of Robotic Systems, S. A. A. Moosavian and M. Karimi.
12. Derivative–Free Nonlinear Kalman Filtering for PMSG Sensorless Control, Gerasimos Rigatos, Pierluigi Siano and Nikolaos Zervos.
13. Construction and Control of Parallel Robots, Moharam Habibnejad Korayem, Soleiman Manteghi and Hami Tourajizadeh.
14. A Localization System for Mobile Robot Using Scanning Laser and Ultrasonic Measurement, Kai Liu, Hongbo Li and Zengqi Sun.
15. Building of Open–Structure Wheel–Based Mobile Robotic Platform, Aleksandar Rodic and Ivan Stojkovic.
16. Design and Physical Implementation of Holonomous Mobile Robot Holbos, Jasmin Velagic, Admir Kaknjo, Faruk Dautovic, Muhidin Hujdur and Nedim Osmic.
17. Advanced Artificial Vision and Mobile Devices for New Applications in Learning, Entertainment and Cultural Heritage Domains, Gian Luca Foresti, Niki Martinel, Christian Micheloni and Marco Vernier.
18. Application of Stereo Vision and ARM Processor for Motion Control, Moharam Habibnejad Korayem, Michal Irani and Saeed Rafee Nekoo.
19. Mechatronics as Science and Engineering or Both, Balan Pillai and Vesa Salminen.
20. A Mechatronic Platform for Robotic Educational Activities, Ioannis Kostavelis, Evangelos Boukas, Lazaros Nalpantidis and Antonios Gasteratos.
21. The Importance of Practical Activities in the Formation of Mechatronic Engineers, Joao Carlos M. Carvalho and Vera Lúcia D.S. Franco

About the Authors

Maki K. Habib is Professor of Robotics and Mechatronics in the School of Science and Engineering, at the American University in Cairo, Egypt. He has been regional editor (Africa/Middle East,) for the International Journal of Mechatronics and Manufacturing Systems (IJMMS) since 2010. He is the recipient of academic awards and has published many articles and books.
J. Paulo Davim is Aggregate Professor in the Department of Mechanical Engineering at the University of Aveiro, Portugal and is Head of MACTRIB (Machining and Tribology Research Group). His main research interests include manufacturing, materials and mechanical engineering.

Specificaties

ISBN13:9781848214187
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:620
Serie:ISTE

Inhoudsopgave

<p>Preface&nbsp;xvii</p>
<p>Chapter 1. Interdisciplinary Mechatronics Engineering Science and the Evolution of Human Friendly and Adaptive Mechatronics&nbsp; 1<br /> Maki K. HABIB</p>
<p>1.1. Introduction&nbsp;2</p>
<p>1.2. Synergetic thinking, learning and innovation in mechatronics design&nbsp;9</p>
<p>1.3. Human adaptive and friendly mechatronics 11</p>
<p>1.4. Conclusions&nbsp;14</p>
<p>1.5. Bibliography&nbsp;15</p>
<p>Chapter 2. Micro–Nanomechatronics for Biological Cell Analysis and Assembly&nbsp;19<br /> Toshio FUKUDA, Masahiro NAKAJIMA, Masaru TAKEUCHI, Tao YUE and Hirotaka TAJIMA</p>
<p>2.1. Introduction of micro–nanomechatronics on biomedical fields&nbsp;19</p>
<p>2.2. Configuration of micro–nanomechatronics&nbsp;21</p>
<p>2.3. Micro–nanomechatronics for single cell analysis&nbsp;25</p>
<p>2.4. Semi–closed microchip for single cell analysis 28</p>
<p>2.5. Biological cell assembly using photo–linkable resin based on the single cell analysis techniques&nbsp;30</p>
<p>2.6. Conclusion&nbsp;33</p>
<p>2.7. Acknowledgments&nbsp;34</p>
<p>2.8. Bibliography&nbsp;34</p>
<p>Chapter 3. Biologically Inspired CPG–Based Locomotion Control System of a Biped Robot Using Nonlinear Oscillators with Phase Resetting&nbsp;37<br /> Shinya AOI</p>
<p>3.1. Introduction&nbsp;37</p>
<p>3.2. Locomotion control system using nonlinear oscillators&nbsp;38</p>
<p>3.3. Stability analysis using a simple biped robot model&nbsp;41</p>
<p>3.4. Experiment using biped robots&nbsp;58</p>
<p>3.5. Conclusion&nbsp;64</p>
<p>3.6. Acknowledgments&nbsp;65</p>
<p>3.7. Bibliography&nbsp;65</p>
<p>Chapter 4. Modeling a Human s Learning Processes toward Continuous Learning Support System&nbsp; 69<br /> Tomohiro YAMAGUCHI, Kouki TAKEMORI and Keiki TAKADAMA</p>
<p>4.1. Introduction&nbsp;70</p>
<p>4.2. Designing the continuous learning by a maze model 76</p>
<p>4.3. The layout design of mazes for the continuous learning task 82</p>
<p>4.3.1. Overview of the continuous learning support system 82</p>
<p>4.3.2. The layout design of mazes on the thinking level space 83</p>
<p>4.4. Experiment&nbsp;85</p>
<p>4.5. Discussions&nbsp;88</p>
<p>4.5.1. The role of motivations to drive the continuous learning 88</p>
<p>4.6. Conclusions&nbsp;92</p>
<p>4.7. Acknowledgments&nbsp;93</p>
<p>4.8. Bibliography&nbsp;93</p>
<p>Chapter 5. PWM Waveform Generation Using Pulse–Type Hardware Neural Networks&nbsp;&nbsp;95<br /> Ken SAITO, Minami TAKATO, Yoshifumi SEKINE and Fumio UCHIKOBA</p>
<p>5.1. Introduction&nbsp;96</p>
<p>5.2. PWM servo motor&nbsp;97</p>
<p>5.3. Pulse–type hardware neuron model&nbsp;99</p>
<p>5.4. Pulse–type hardware neural networks&nbsp;104</p>
<p>5.5. Measurements of constructed discrete circuit 108</p>
<p>5.6. Conclusion&nbsp;109</p>
<p>5.7. Acknowledgments&nbsp;109</p>
<p>5.8. Bibliography 110</p>
<p>Chapter 6. Parallel Wrists: Limb Types, Singularities and New Perspectives 113<br /> Raffaele DI GREGORIO</p>
<p>6.1. Limb architectures and mobility analysis&nbsp;113</p>
<p>6.2. Singularities and performance indices&nbsp;124</p>
<p>6.3. New perspectives&nbsp;139</p>
<p>6.4. Bibliography&nbsp;142</p>
<p>Chapter 7. A Robot–Assisted Rehabilitation System RehabRoby 145<br /> Duygun EROL BARKANA and Fatih &Ouml;ZKUL</p>
<p>7.1. Introduction&nbsp;145</p>
<p>7.2. Background&nbsp;146</p>
<p>7.3. Control architecture&nbsp;149</p>
<p>7.4. RehabRoby 150</p>
<p>7.5. Controllers of RehabRoby&nbsp;155</p>
<p>7.6. Concluding remarks&nbsp;158</p>
<p>7.7. Acknowledgments&nbsp;159</p>
<p>7.8. Bibliography&nbsp;159</p>
<p>Chapter 8. MIMO Actuator Force Control of a Parallel Robot for Ankle Rehabilitation&nbsp;&nbsp;163<br /> Andrew MCDAID, Yun HO TSOI and Shengquan XIE</p>
<p>8.1. Introduction&nbsp;163</p>
<p>8.2. Ankle rehabilitation robot&nbsp;167</p>
<p>8.2.1. Design requirements&nbsp;168</p>
<p>8.3. Actuator force control&nbsp;176</p>
<p>8.4. Experimental results&nbsp;198</p>
<p>8.5. Concluding remarks&nbsp;204</p>
<p>8.6. Bibliography&nbsp;205</p>
<p>Chapter 9. Performance Evaluation of a Probe Climber for Maintaining Wire Rope&nbsp;&nbsp;209<br /> Akihisa TABATA, Emiko HARA and Yoshio AOKI</p>
<p>9.1. Introduction&nbsp;209</p>
<p>9.2. Optimize friction drive conditions using a prototype probe climber 210</p>
<p>9.3. Impact of different surface friction materials for friction pulley made on elevation performance&nbsp;213</p>
<p>9.4. Damage detection test of elevator wire rope&nbsp;216</p>
<p>9.5. Damage detection through signal processing&nbsp;218</p>
<p>9.6. Integrity evaluation of wire rope through MFL strength 219</p>
<p>9.7. Damage detection of wire rope using neural networks&nbsp;224</p>
<p>9.8. Conclusion&nbsp;224</p>
<p>9.9. Bibliography&nbsp;225</p>
<p>Chapter 10. Fundamentals on the Use of Shape Memory Alloys in Soft Robotics&nbsp;227<br /> Matteo CIANCHETTI</p>
<p>10.1. Introduction&nbsp;228</p>
<p>10.2. Shape memory effect and superelastic effect 230</p>
<p>10.3. SMA thermomechanical behavior&nbsp;231</p>
<p>10.4. SMA constitutive models&nbsp;234</p>
<p>10.5. Hints on SMA thermomechanical testing 235</p>
<p>10.6. Design principles&nbsp;237</p>
<p>10.7. Fabrication methods&nbsp;243</p>
<p>10.8. Activation methods and control design 244</p>
<p>10.9. Applications in Soft Robotics&nbsp;248</p>
<p>10.10. Conclusions&nbsp;251</p>
<p>10.11. Bibliography&nbsp;252</p>
<p>Chapter 11. Tuned Modified Transpose Jacobian Control of Robotic Systems&nbsp;255<br /> S. A. A. MOOSAVIAN and M. KARIMI</p>
<p>11.1. Introduction&nbsp;256</p>
<p>11.2. TMTJ control law&nbsp; 257</p>
<p>11.3. Obtained results and discussions&nbsp;265</p>
<p>11.3.1. Fixed base manipulator 265</p>
<p>11.3.2. Mobile base manipulator&nbsp;269</p>
<p>11.4. Conclusions&nbsp;272</p>
<p>11.5. Bibliography&nbsp;273</p>
<p>Chapter 12. Derivative–Free Nonlinear Kalman Filtering for PMSG Sensorless Control&nbsp;&nbsp;277<br /> Gerasimos RIGATOS, Pierluigi SIANO and Nikolaos ZERVOS</p>
<p>12.1. Introduction&nbsp;277</p>
<p>12.2. Dynamic model of the permanent magnet synchronous generator 279</p>
<p>12.3. Lie algebra–based design of nonlinear state estimators 282</p>
<p>12.4. Differential flatness for nonlinear dynamical systems&nbsp;288</p>
<p>12.5. Differential flatness of the PMSG&nbsp;293</p>
<p>12.6. Robust state estimation–based control of the PMSG 296</p>
<p>12.7. Estimation of PMSG disturbance input with Kalman filtering 298</p>
<p>12.8. Simulation experiments&nbsp;302</p>
<p>12.9. Conclusions&nbsp;307</p>
<p>12.10. Bibliography&nbsp;308</p>
<p>Chapter 13. Construction and Control of Parallel Robots 313<br /> Moharam HABIBNEJAD KORAYEM, Soleiman MANTEGHI and Hami TOURAJIZADEH</p>
<p>13.1. Introduction&nbsp;313</p>
<p>13.2. A parallel robot mechanism 315</p>
<p>13.3. Actuators&nbsp;324</p>
<p>13.4. Sensors&nbsp;328</p>
<p>13.5. Data transfer protocol 342</p>
<p>13.6. Graphical user interface (GUI)&nbsp;347</p>
<p>13.7. Result and verifications&nbsp;357</p>
<p>13.8. Conclusion&nbsp;362</p>
<p>13.9. Bibliography&nbsp;364</p>
<p>Chapter 14. A Localization System for Mobile Robot Using Scanning Laser and Ultrasonic Measurement&nbsp;369<br /> Kai LIU, Hongbo LI and Zengqi SUN</p>
<p>14.1. Introduction&nbsp;369</p>
<p>14.2. System configuration 371</p>
<p>14.3. Implementation 373</p>
<p>14.4. Experimental results&nbsp;377</p>
<p>14.5. Conclusion&nbsp;382</p>
<p>14.6. Acknowledgments&nbsp;383</p>
<p>14.7. Bibliography&nbsp;383</p>
<p>Chapter 15. Building of Open–Structure Wheel–Based Mobile Robotic Platform 385<br /> Aleksandar RODI&AElig; and Ivan STOJKOVI&AElig;</p>
<p>15.1. Introduction&nbsp;385</p>
<p>15.2. State of the art&nbsp;386</p>
<p>15.3. Configuring of the experimental system&nbsp;389</p>
<p>15.4. Modeling and simulation of the system&nbsp;394</p>
<p>15.5. Motion planning and control 403</p>
<p>15.6. Simulation and experimental testing&nbsp;409</p>
<p>15.7. Concluding remarks&nbsp;416</p>
<p>15.8. Acknowledgments&nbsp;417</p>
<p>15.9. Bibliography&nbsp;417</p>
<p>15.10. Appendix&nbsp;421</p>
<p>Chapter 16. Design and Physical Implementation of Holonomous Mobile Robot Holbos 423<br /> Jasmin VELAGIC, Admir KAKNJO, Faruk DAUTOVIC, Muhidin HUJDUR and Nedim OSMIC</p>
<p>16.1. Introduction&nbsp;423</p>
<p>16.2. Locomotion of holonomous mobile robot 424</p>
<p>16.3. Mechanical design&nbsp;430</p>
<p>16.4. Electrical design&nbsp;431</p>
<p>16.5. Results&nbsp;444</p>
<p>16.6. Conclusion&nbsp;447</p>
<p>16.7. Bibliography&nbsp;448</p>
<p>Chapter 17. Advanced Artificial Vision and Mobile Devices for New Applications in Learning, Entertainment and Cultural Heritage Domains&nbsp;&nbsp;451<br /> Gian Luca FORESTI, Niki MARTINEL, Christian MICHELONI and MARCO VERNIER</p>
<p>17.1. Introduction&nbsp;451</p>
<p>17.2. Chapter contributions 455</p>
<p>17.3. Mobile devices for education purposes&nbsp;456</p>
<p>17.4. Image processing supports HCI in museum application 461</p>
<p>17.5. Back to the Future: a 3D image gallery 471</p>
<p>17.6. Conclusions and future works&nbsp;477</p>
<p>17.7. Bibliography&nbsp;477</p>
<p>Chapter 18. Application of Stereo Vision and ARM Processor for Motion Control&nbsp;483<br /> Moharam HABIBNEJAD KORAYEM, Michal IRANI and Saeed RAFEE NEKOO</p>
<p>18.1. Introduction&nbsp;483</p>
<p>18.2. Stereo vision&nbsp;486</p>
<p>18.3. Triangulation&nbsp;487</p>
<p>18.4. End–effector orientation&nbsp;490</p>
<p>18.5. Experimental setup and results&nbsp;492</p>
<p>18.6. Summary&nbsp;497</p>
<p>18.7. Bibliography&nbsp;498</p>
<p>Chapter 19. Mechatronics as Science and Engineering or Both 501<br /> Balan PILLAI and Vesa SALMINEN</p>
<p>19.1. Introduction&nbsp;501</p>
<p>19.2. Theories and methods of design, planning and manufacturing 504</p>
<p>19.3. Complexity versus complicatedness&nbsp;506</p>
<p>19.4. Benefits of fast product developments&nbsp;513</p>
<p>19.5. Nature of product development process&nbsp;516</p>
<p>19.6. Planning the timetable of a product design project&nbsp;518</p>
<p>19.7. Designing the product concept&nbsp;520</p>
<p>19.8. Enhancing conceptual design&nbsp;520</p>
<p>19.9. Interaction between the parts of the machine 523</p>
<p>19.10. Effect of the strength of interaction between product parts and development speed&nbsp;524</p>
<p>19.11. Definition of product and service 527</p>
<p>19.12. The case studies&nbsp;529</p>
<p>19.13. Networking systems and learning mechanism&nbsp;531</p>
<p>19.14. Model–based methodology: an implemented case 536</p>
<p>19.15. Conclusions&nbsp;540</p>
<p>19.16. Bibliography&nbsp;541</p>
<p>Chapter 20. A Mechatronic Platform for Robotic Educational Activities&nbsp;&nbsp;543<br /> Ioannis KOSTAVELIS, Evangelos BOUKAS, Lazaros NALPANTIDIS and Antonios GASTERATOS</p>
<p>20.1. Introduction&nbsp;543</p>
<p>20.2. System overview&nbsp;545</p>
<p>20.3. Educational activities 554</p>
<p>20.4. Experiences from educational activities&nbsp;561</p>
<p>20.5. Conclusions&nbsp;565</p>
<p>20.6. Acknowledgments&nbsp;565</p>
<p>20.7. Bibliography&nbsp;566</p>
<p>Chapter 21. The Importance of Practical Activities in the Formation of Mechatronic Engineers&nbsp;569<br /> Jo&atilde;o Carlos M. CARVALHO and Vera L&uacute;cia D.S. FRANCO</p>
<p>21.1. Introduction&nbsp;569</p>
<p>21.2. Curricular and extracurricular practical activities 575</p>
<p>21.3. Undergraduate course of Mechatronics Engineering at the Federal University of Uberl&acirc;ndia/Brazil 580</p>
<p>21.4. Discussions&nbsp;588</p>
<p>21.5. Conclusions&nbsp;590</p>
<p>21.6. Bibliography&nbsp;591</p>
<p>List of Authors&nbsp;593</p>
<p>Index 599</p>

Rubrieken

    Personen

      Trefwoorden

        Interdisciplinary Mechatronics – Engineering Science and Research Development