, ,

Geomechanical Issues in CO2 Storage Facilities

Specificaties
Gebonden, 248 blz. | Engels
John Wiley & Sons | e druk, 2012
ISBN13: 9781848214163
Rubricering
John Wiley & Sons e druk, 2012 9781848214163
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

CO2 capture and geological storage is seen as the most effective technology to rapidly reduce the emission of greenhouse gases into the atmosphere. Up until now and before proceeding to an industrial development of this technology, laboratory research has been conducted for several years and pilot projects have been launched. So far, these studies have mainly focused on transport and geochemical issues and few studies have been dedicated to the geomechanical issues in CO2 storage facilities. The purpose of this book is to give an overview of the multiphysics processes occurring in CO2 storage facilities, with particular attention given to coupled geomechanical problems.
The book is divided into three parts. The first part is dedicated to transport processes and focuses on the efficiency of the storage complex and the evaluation of possible leakage paths. The second part deals with issues related to reservoir injectivity and the presence of fractures and occurrence of damage. The final part of the book concerns the serviceability and ageing of the geomaterials whose poromechanical properties may be altered by contact with the injected reactive fluid.

Specificaties

ISBN13:9781848214163
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:248
Serie:ISTE

Inhoudsopgave

<p>Preface&nbsp;xi</p>
<p>PART 1. TRANSPORT PROCESSES&nbsp; 1</p>
<p>Chapter 1. Assessing Seal Rock Integrity for CO2 Geological Storage Purposes&nbsp; 3<br /> Daniel BROSETA</p>
<p>1.1. Introduction&nbsp;3</p>
<p>1.2. Gas breakthrough experiments in water–saturated rocks&nbsp;6</p>
<p>1.3. Interfacial properties involved in seal rock integrity&nbsp;9</p>
<p>1.3.1. Brine–gas IFT&nbsp;9</p>
<p>1.3.2. Wetting behavior&nbsp;10</p>
<p>1.4. Maximum bottomhole pressure for storage in a depleted hydrocarbon reservoir&nbsp;12</p>
<p>1.5. Evidences for capillary fracturing in seal rocks&nbsp;13</p>
<p>1.6. Summary and prospects&nbsp;14</p>
<p>1.7. Bibliography&nbsp;15</p>
<p>Chapter 2. Gas Migration through Clay Barriers in the Context of Radioactive Waste Disposal: Numerical Modeling of an In Situ Gas Injection Test&nbsp;&nbsp;21<br /> Pierre G&Eacute;RARD, Jean–Pol RADU, Jean TALANDIER, R&eacute;mi de La VAISSI&Egrave;RE, Robert CHARLIER and Fr&eacute;d&eacute;ric COLLIN</p>
<p>2.1. Introduction&nbsp;21</p>
<p>2.2. Field experiment description&nbsp;23</p>
<p>2.3. Boundary value problem&nbsp;26</p>
<p>2.3.1. 1D and 3D geometry and boundary conditions&nbsp;26</p>
<p>2.3.2. Hydraulic model&nbsp;27</p>
<p>2.3.3. Hydraulic parameters&nbsp;28</p>
<p>2.4. Numerical results&nbsp;29</p>
<p>2.4.1. 1D modeling 30</p>
<p>2.4.2. 3D modeling&nbsp;34</p>
<p>2.5. Discussion and conclusions&nbsp;37</p>
<p>2.6. Bibliography&nbsp;39</p>
<p>Chapter 3. Upscaling Permeation Properties in Porous Materials from Pore Size Distributions&nbsp;&nbsp;43<br /> Fadi KHADDOUR, David GR&Eacute;GOIRE and Gilles PIJAUDIER–CABOT</p>
<p>3.1. Introduction&nbsp;43</p>
<p>3.2. Assembly of parallel pores&nbsp;44</p>
<p>3.2.1. Presentation&nbsp;44</p>
<p>3.2.2. Permeability&nbsp;45</p>
<p>3.2.3. Case of a sinusoidal multi–modal pore size distribution&nbsp;47</p>
<p>3.3. Mixed assembly of parallel and series pores 48</p>
<p>3.3.1. Presentation&nbsp;48</p>
<p>3.3.2. Permeability&nbsp;49</p>
<p>3.4. Comparisons with experimental results&nbsp;51</p>
<p>3.4.1. Electrical fracturing tests 51</p>
<p>3.4.2. Measurement of the pore size distribution&nbsp;53</p>
<p>3.4.3. Model capabilities to predict permeability and comparisons with experiments 54</p>
<p>3.5. Conclusions&nbsp;55</p>
<p>3.6. Acknowledgments 55</p>
<p>3.7. Bibliography&nbsp;56</p>
<p>PART 2. FRACTURE, DEFORMATION AND COUPLED EFFECTS&nbsp; 57</p>
<p>Chapter 4. A Non–Local Damage Model for Heterogeneous Rocks Application to Rock Fracturing Evaluation Under Gas Injection Conditions 59<br /> Darius M. SEYEDI, Nicolas GUY, Serigne SY, Sylvie GRANET and Fran&ccedil;ois HILD</p>
<p>4.1. Introduction&nbsp;60</p>
<p>4.2. A probabilistic non–local model for rock fracturing&nbsp;61</p>
<p>4.3. Hydromechanical coupling scheme&nbsp;63</p>
<p>4.4. Application example and results 66</p>
<p>4.4.1. Effect of Weibull modulus&nbsp;70</p>
<p>4.5. Conclusions and perspectives 70</p>
<p>4.6. Acknowledgments 71</p>
<p>4.7. Bibliography&nbsp;71</p>
<p>Chapter 5. Caprock Breach: A Potential Threat to Secure Geologic Sequestration of CO2 75<br /> A.P.S. SELVADURAI</p>
<p>5.1. Introduction&nbsp;75</p>
<p>5.2. Caprock flexure during injection&nbsp;77</p>
<p>5.2.1. Numerical results for the caprock geologic media interaction&nbsp;81</p>
<p>5.3. Fluid leakage from a fracture in the caprock&nbsp;85</p>
<p>5.3.1. Numerical results for fluid leakage from a fracture in the caprock&nbsp;89</p>
<p>5.4. Concluding remarks&nbsp;90</p>
<p>5.5. Acknowledgment&nbsp;91</p>
<p>5.6. Bibliography&nbsp;91</p>
<p>Chapter 6. Shear Behavior Evolution of a Fault due to Chemical Degradation of Roughness: Application to the Geological Storage of CO2&nbsp;95<br /> Olivier NOUAILLETAS, C&eacute;line PERLOT, Christian LA BORDERIE, Baptiste ROUSSEAU and G&eacute;rard BALLIVY</p>
<p>6.1. Introduction&nbsp;96</p>
<p>6.2. Experimental setup&nbsp;97</p>
<p>6.3. Roughness and chemical attack&nbsp;99</p>
<p>6.4. Shear tests 103</p>
<p>6.5. Peak shear strength and peak shear displacement: Barton s model 107</p>
<p>6.6. Conclusion and perspectives&nbsp;112</p>
<p>6.7. Acknowledgment&nbsp;113</p>
<p>6.8. Bibliography&nbsp;113</p>
<p>Chapter 7. CO2 Storage in Coal Seams: Coupling Surface Adsorption and Strain&nbsp;115<br /> Saeid NIKOOSOKHAN, Laurent BROCHARD, Matthieu VANDAMME, Patrick DANGLA, Roland J.–M. PELLENQ, Brice LECAMPION and Teddy FEN–CHONG</p>
<p>7.1. Introduction&nbsp;115</p>
<p>7.2. Poromechanical model for coal bed reservoir&nbsp;116</p>
<p>7.2.1. Physics of adsorption–induced swelling of coal&nbsp;116</p>
<p>7.2.2. Assumptions of model for coal bed reservoir&nbsp;118</p>
<p>7.2.3. Case of coal bed reservoir with no adsorption&nbsp;118</p>
<p>7.2.4. Derivation of constitutive equations for coal bed reservoir with adsorption&nbsp;120</p>
<p>7.3. Simulations&nbsp;122</p>
<p>7.3.1. Simulations at the molecular scale: adsorption of carbon dioxide on coal&nbsp;122</p>
<p>7.3.2. Simulations at the scale of the reservoir 124</p>
<p>7.3.3. Discussion&nbsp;127</p>
<p>7.4. Conclusions&nbsp;128</p>
<p>7.5. Bibliography&nbsp;129</p>
<p>PART 3. AGING AND INTEGRITY 133</p>
<p>Chapter 8. Modeling by Homogenization of the Long–Term Rock Dissolution and Geomechanical Effects 135<br /> Jolanta LEWANDOWSKA</p>
<p>8.1. Introduction&nbsp;135</p>
<p>8.2. Microstructure and modeling by homogenization 136</p>
<p>8.3. Homogenization of the H–M–T problem&nbsp;138</p>
<p>8.3.1. Formulation of the problem at the microscopic scale&nbsp;138</p>
<p>8.3.2. Asymptotic developments method&nbsp;142</p>
<p>8.3.3. Solutions&nbsp;143</p>
<p>8.3.4. Summary of the macroscopic H–M–T model &nbsp;148</p>
<p>8.4. Homogenization of the C–M problem&nbsp;148</p>
<p>8.4.1. Formulation of the problem at the microscopic scale&nbsp;148</p>
<p>8.4.2. Homogenization&nbsp;150</p>
<p>8.4.3. Summary of the macroscopic C–M model &nbsp;151</p>
<p>8.5. Numerical computations of the time degradation of the macroscopic rigidity tensor&nbsp;152</p>
<p>8.5.1. Definition of the problem&nbsp;152</p>
<p>8.5.2. Results and discussion&nbsp;154</p>
<p>8.6. Conclusions&nbsp;158</p>
<p>8.7. Acknowledgment&nbsp;160</p>
<p>8.8. Bibliography&nbsp;160</p>
<p>Chapter 9. Chemoplastic Modeling of Petroleum Cement Paste under Coupled Conditions&nbsp;163<br /> Jian Fu SHAO, Y. JIA, Nicholas BURLION, Jeremy SAINT–MARC and Adeline GARNIER</p>
<p>9.1. Introduction&nbsp;163</p>
<p>9.2. General framework for chemo–mechanical modeling 164</p>
<p>9.2.1. Phenomenological chemistry model&nbsp;166</p>
<p>9.3. Specific plastic model for petroleum cement paste 169</p>
<p>9.3.1. Elastic behavior&nbsp;169</p>
<p>9.3.2. Plastic pore collapse model&nbsp;170</p>
<p>9.3.3. Plastic shearing model&nbsp;172</p>
<p>9.4. Validation of model&nbsp;174</p>
<p>9.5. Conclusions and perspectives&nbsp;178</p>
<p>9.6. Bibliography&nbsp;179</p>
<p>Chapter 10. Reactive Transport Modeling of CO2 Through Cementitious Materials Under Supercritical Boundary Conditions&nbsp;&nbsp;181<br /> Jitun SHEN, Patrick DANGLA and Micka&euml;l THIERY</p>
<p>10.1. Introduction&nbsp;181</p>
<p>10.2. Carbonation of cement–based materials&nbsp;183</p>
<p>10.2.1. Solubility of the supercritical CO2 in the pore solution&nbsp;183</p>
<p>10.2.2. Chemical reactions&nbsp;184</p>
<p>10.2.3. Carbonation of CH&nbsp;185</p>
<p>10.2.4. Carbonation of C–S–H&nbsp;187</p>
<p>10.2.5. Porosity change&nbsp;190</p>
<p>10.3. Reactive transport modeling 191</p>
<p>10.3.1. Field equations&nbsp;191</p>
<p>10.3.2. Transport of the liquid phase&nbsp;194</p>
<p>10.3.3. Transport of the gas phase&nbsp;194</p>
<p>10.3.4. Transport of aqueous species&nbsp;196</p>
<p>10.4. Simulation results and discussion&nbsp;196</p>
<p>10.4.1. Sandstone–like conditions&nbsp;197</p>
<p>10.4.2. Limestone–like conditions&nbsp;198</p>
<p>10.4.3. Study of CO2 concentration and initial porosity 199</p>
<p>10.4.4. Supercritical boundary conditions&nbsp;201</p>
<p>10.5. Conclusion&nbsp;204</p>
<p>10.6. Acknowledgment&nbsp;205</p>
<p>10.7. Bibliography&nbsp;205</p>
<p>Chapter 11. Chemo–Poromechanical Study of Wellbore Cement Integrity&nbsp;209<br /> Jean–Michel PEREIRA and Val&eacute;rie VALLIN</p>
<p>11.1. Introduction 209</p>
<p>11.2. Poromechanics of cement carbonation in the context of CO2 storage 210</p>
<p>11.2.1. Context and definitions&nbsp;210</p>
<p>11.2.2. Chemical reactions 214</p>
<p>11.2.3. Chemo–poromechanical behaviour&nbsp;217</p>
<p>11.2.4. Balance equations 221</p>
<p>11.3. Application to wellbore cement&nbsp;222</p>
<p>11.3.1. Description of the problem 222</p>
<p>11.3.2. Initial state and boundary conditions&nbsp;223</p>
<p>11.3.3. Illustrative results&nbsp;223</p>
<p>11.4. Conclusion&nbsp;227</p>
<p>11.5. Acknowledgments&nbsp;227</p>
<p>11.6. Bibliography&nbsp;227</p>
<p>List of Authors&nbsp;229</p>
<p>Index&nbsp; 000</p>

Rubrieken

    Personen

      Trefwoorden

        Geomechanical Issues in CO2 Storage Facilities