Multiple Models Approach in Automation – Takagi–Sugeno Fuzzy Systems

Takagi–Sugeno Fuzzy Systems

Specificaties
Gebonden, 208 blz. | Engels
John Wiley & Sons | e druk, 2012
ISBN13: 9781848214125
Rubricering
John Wiley & Sons e druk, 2012 9781848214125
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

Much work on analysis and synthesis problems relating to the multiple model approach has already been undertaken. This has been motivated by the desire to establish the problems of control law synthesis and full state estimation in numerical terms.
In recent years, a general approach based on multiple LTI models (linear or affine) around various function points has been proposed. This so–called multiple model approach is a convex polytopic representation, which can be obtained either directly from a nonlinear mathematical model, through mathematical transformation or through linearization around various function points.
This book concentrates on the analysis of the stability and synthesis of control laws and observations for multiple models. The authors approach is essentially based on Lyapunov s second method and LMI formulation. Uncertain multiple models with unknown inputs are studied and quadratic and non–quadratic Lyapunov functions are also considered.

Specificaties

ISBN13:9781848214125
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:208
Serie:ISTE

Inhoudsopgave

<p>Notations ix</p>
<p>Introduction&nbsp;xiii</p>
<p>Chapter 1. Multiple Model Representation&nbsp;1</p>
<p>1.1. Introduction&nbsp;1</p>
<p>1.2. Techniques for obtaining multiple models&nbsp;2</p>
<p>1.2.1. Construction of multiple models by identification&nbsp;3</p>
<p>1.2.2. Multiple model construction by linearization&nbsp;8</p>
<p>1.2.3. Multiple model construction by mathematical transformation&nbsp;14</p>
<p>1.2.4. Multiple model representation using the neural approach&nbsp;22</p>
<p>1.3. Analysis and synthesis tools&nbsp;29</p>
<p>1.3.1. Lyapunov approach 29</p>
<p>1.3.2. Numeric tools: linear matrix inequalities&nbsp;31</p>
<p>1.3.3. Multiple model control techniques&nbsp;38</p>
<p>Chapter 2. Stability of Continuous Multiple Models&nbsp;41</p>
<p>2.1. Introduction&nbsp;41</p>
<p>2.2. Stability analysis&nbsp;42</p>
<p>2.2.1. Exponential stability&nbsp;48</p>
<p>2.3. Relaxed stability&nbsp;49</p>
<p>2.4. Example&nbsp;52</p>
<p>2.5. Robust stability&nbsp;54</p>
<p>2.5.1. Norm–bounded uncertainties&nbsp;56</p>
<p>2.5.2. Structured parametric uncertainties&nbsp;57</p>
<p>2.5.3. Analysis of nominal stability&nbsp;60</p>
<p>2.5.4. Analysis of robust stability&nbsp;62</p>
<p>2.6. Conclusion&nbsp;63</p>
<p>Chapter 3. Multiple Model State Estimation&nbsp;65</p>
<p>3.1. Introduction&nbsp;65</p>
<p>3.2. Synthesis of multiple observers&nbsp;67</p>
<p>3.2.1. Linearization&nbsp;68</p>
<p>3.2.2. Pole placement&nbsp;70</p>
<p>3.2.3. Application: asynchronous machine 72</p>
<p>3.2.4. Synthesis of multiple observers&nbsp;75</p>
<p>3.3. Multiple observer for an uncertain multiple model&nbsp;77</p>
<p>3.4. Synthesis of unknown input observers&nbsp;82</p>
<p>3.4.1. Unknown inputs affecting system state&nbsp;83</p>
<p>3.4.2. Unknown inputs affecting system state and output&nbsp;87</p>
<p>3.4.3. Estimation of unknown inputs&nbsp;88</p>
<p>3.5. Synthesis of unknown input observers: another approach&nbsp;93</p>
<p>3.5.1. Principle 93</p>
<p>3.5.2. Multiple observers subject to unknown inputs and uncertainties&nbsp;96</p>
<p>3.6. Conclusion&nbsp;97</p>
<p>Chapter 4. Stabilization of Multiple Models&nbsp;99</p>
<p>4.1. Introduction 99</p>
<p>4.2. Full state feedback control&nbsp;99</p>
<p>4.2.1. Linearization 101</p>
<p>4.2.2. Specific case&nbsp;103</p>
<p>4.2.3. Stability: decay rate&nbsp;106</p>
<p>4.3. Observer–based controller&nbsp;113</p>
<p>4.3.1. Unmeasurable decision variables&nbsp;115</p>
<p>4.4. Static output feedback control&nbsp;119</p>
<p>4.4.1. Pole placement&nbsp;122</p>
<p>4.5. Conclusion&nbsp;126</p>
<p>Chapter 5. Robust Stabilization of Multiple Models&nbsp;127</p>
<p>5.1. Introduction&nbsp;127</p>
<p>5.2. State feedback control&nbsp;129</p>
<p>5.2.1. Norm–bounded uncertainties&nbsp;129</p>
<p>5.2.2. Interval uncertainties&nbsp;131</p>
<p>5.3. Output feedback control&nbsp;137</p>
<p>5.3.1. Norm–bounded uncertainties&nbsp;137</p>
<p>5.3.2. Interval uncertainties&nbsp;147</p>
<p>5.4. Observer–based control&nbsp;150</p>
<p>5.5. Conclusion&nbsp;156</p>
<p>Conclusion&nbsp;157</p>
<p>APPENDICES&nbsp;159</p>
<p>Appendix 1: LMI Regions&nbsp;161</p>
<p>A1.1. Definition of an LMI region&nbsp;161</p>
<p>A1.2. Interesting LMI region examples&nbsp;162</p>
<p>A1.2.1. Open left half–plane 163</p>
<p>A1.2.2. Stability&nbsp;163</p>
<p>A1.2.3. Vertical band&nbsp;163</p>
<p>A1.2.4. Horizontal band&nbsp;164</p>
<p>A1.2.5. Disk of radius R, centered at (q,0)&nbsp;164</p>
<p>A1.2.6. Conical sector&nbsp;165</p>
<p>Appendix 2: Properties of M–Matrices&nbsp;167</p>
<p>Appendix 3: Stability and Comparison Systems 169</p>
<p>A3.1. Vector norms and overvaluing systems&nbsp;169</p>
<p>A3.1.1. Definition of a vector norm&nbsp;169</p>
<p>A3.1.2. Definition of a system overvalued from a continuous process&nbsp;170</p>
<p>A3.1.3. Application&nbsp;172</p>
<p>A3.2. Vector norms and the principle of comparison&nbsp;173</p>
<p>A3.3. Application to stability analysis 174</p>
<p>Bibliography&nbsp;175</p>
<p>Index&nbsp;185</p>

Rubrieken

    Personen

      Trefwoorden

        Multiple Models Approach in Automation – Takagi–Sugeno Fuzzy Systems