,

Laser Metrology in Fluid Mechanics – Granulometry, temperature and concentration measurements

Granulometry, Temperature and Concentration Measurements

Specificaties
Gebonden, 346 blz. | Engels
John Wiley & Sons | e druk, 2012
ISBN13: 9781848213982
Rubricering
John Wiley & Sons e druk, 2012 9781848213982
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

In fluid mechanics, non–intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.
The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.
Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser–induced fluorescence, coherent anti–Stokes Raman scattering using lasers and parametric sources, and absorption spectroscopy by tunable laser diodes, which are generally better suited for high velocity flows. The size determination of particles by optical means, a technique mainly applied in two–phase flows, is the subject of another chapter, along with a description of the principles of light scattering.
For each technique the basic principles are given, as well as optical devices and data processing. A final chapter reminds the reader of the main safety precautions to be taken when using powerful lasers.

Specificaties

ISBN13:9781848213982
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:346
Serie:ISTE

Inhoudsopgave

<p>Preface&nbsp;xi</p>
<p>Introduction xiii<br /> Alain BOUTIER</p>
<p>Chapter 1. Basics on Light Scattering by Particles&nbsp;1<br /> Fabrice ONOFRI and S&eacute;verine BARBOSA</p>
<p>1.1. Introduction&nbsp;1</p>
<p>1.2. A brief synopsis of electromagnetic theory&nbsp;2</p>
<p>1.2.1. Maxwell s equations&nbsp;2</p>
<p>1.2.2. Harmonic electromagnetic plane waves&nbsp;4</p>
<p>1.2.3. Optical constants&nbsp;9</p>
<p>1.2.4. Light scattering by a single particle&nbsp;11</p>
<p>1.3. Methods using separation of variables&nbsp;16</p>
<p>1.3.1. Lorenz Mie (or Mie) theory&nbsp;16</p>
<p>1.3.2. Debye and complex angular momentum theories&nbsp;26</p>
<p>1.4. Rayleigh theory and the discrete dipole approximation&nbsp;29</p>
<p>1.4.1. Rayleigh theory&nbsp;29</p>
<p>1.4.2. Discrete dipole approximation&nbsp;31</p>
<p>1.5. The T–matrix method&nbsp;32</p>
<p>1.6. Physical (or wave) optics models&nbsp;34</p>
<p>1.6.1. Huygens Fresnel integral&nbsp;35</p>
<p>1.6.2. Fraunhofer diffraction theory for a particle with a circular cross section 37</p>
<p>1.6.3. Airy theory of the rainbow 40</p>
<p>1.6.4. Marston s physical–optics approximation&nbsp;44</p>
<p>1.7. Geometrical optics&nbsp;47</p>
<p>1.7.1. Calculation of the scattering angle 48</p>
<p>1.7.2. Calculation of the intensity of rays&nbsp;48</p>
<p>1.7.3. Calculation of the phase and amplitude of rays&nbsp;49</p>
<p>1.8. Multiple scattering and Monte Carlo models 50</p>
<p>1.8.1. Scattering by an optically diluted particle system&nbsp;50</p>
<p>1.8.2. Multiple scattering&nbsp;51</p>
<p>1.8.3. Monte Carlo method&nbsp;52</p>
<p>1.9. Conclusion&nbsp;57</p>
<p>1.10. Bibliography&nbsp;57</p>
<p>Chapter 2. Optical Particle Characterization&nbsp;&nbsp;67<br /> Fabrice ONOFRI and S&eacute;verine BARBOSA</p>
<p>2.1. Introduction&nbsp;67</p>
<p>2.2. Particles in flows 69</p>
<p>2.2.1. Diameter, shape and concentration&nbsp;69</p>
<p>2.2.2. Statistical representation of particle size data 70</p>
<p>2.2.3. Concentrations and fluxes&nbsp;74</p>
<p>2.3. An attempt to classify OPC techniques&nbsp;75</p>
<p>2.3.1. Physical principles and measured quantities&nbsp;75</p>
<p>2.3.2. Nature and procedure to achieve statistics&nbsp;76</p>
<p>2.4. Phase Doppler interferometry (or anemometry)&nbsp;77</p>
<p>2.4.1. Principle&nbsp;77</p>
<p>2.4.2. Modeling the phase diameter relationship&nbsp; 81</p>
<p>2.4.3. Experimental setup and typical results&nbsp;&nbsp;87</p>
<p>2.4.4. Conclusion&nbsp;90</p>
<p>2.5. Ellipsometry&nbsp;91</p>
<p>2.6. Forward (or laser ) diffraction 93</p>
<p>2.6.1. Principle&nbsp;93</p>
<p>2.6.2. Modeling and inversion of diffraction patterns&nbsp;95</p>
<p>2.6.3. Typical experimental setup and results&nbsp;98</p>
<p>2.6.4. Conclusion&nbsp;100</p>
<p>2.7. Rainbow and near–critical–angle diffractometry techniques 101</p>
<p>2.7.1. Similarities to forward diffraction&nbsp;101</p>
<p>2.7.2. Rainbow diffractometry&nbsp;102</p>
<p>2.7.3. Near–critical–angle diffractometry&nbsp;107</p>
<p>2.8. Classical shadowgraph imaging&nbsp;112</p>
<p>2.8.1. Principle and classical setup&nbsp;112</p>
<p>2.8.2. One–dimensional shadow Doppler technique&nbsp;114</p>
<p>2.8.3. Calculation of particle images using the point spread function 115</p>
<p>2.8.4. Conclusion 118</p>
<p>2.9. Out–of–focus interferometric imaging 119</p>
<p>2.9.1. Principle&nbsp;119</p>
<p>2.9.2. Modeling the diameter angular frequency relationship 120</p>
<p>2.9.3. Conclusion&nbsp;126</p>
<p>2.10. Holography of particles&nbsp;128</p>
<p>2.10.1. Gabor holography for holographic films&nbsp;128</p>
<p>2.10.2. Inline digital holography 129</p>
<p>2.10.3. Conclusion&nbsp;131</p>
<p>2.11. Light extinction spectrometry&nbsp;132</p>
<p>2.11.1. Principle&nbsp;132</p>
<p>2.11.2. Algebraic inverse method&nbsp;134</p>
<p>2.11.3. Experimental setup and conclusion 136</p>
<p>2.12. Photon correlation spectroscopy&nbsp;139</p>
<p>2.13. Laser–induced fluorescence and elastic–scattering imaging ratio&nbsp;141</p>
<p>2.13.1. Principle&nbsp;142</p>
<p>2.13.2. Experimental setup and results&nbsp;143</p>
<p>2.13.3. Conclusion&nbsp;144</p>
<p>2.14. Laser–induced incandescence 144</p>
<p>2.15. General conclusions&nbsp;145</p>
<p>2.16. Bibliography&nbsp;146</p>
<p>Chapter 3. Laser–Induced Fluorescence 159<br /> Fabrice LEMOINE and Fr&eacute;d&eacute;ric GRISCH</p>
<p>3.1. Recall on energy quantification of molecules 159</p>
<p>3.1.1. Radiative transitions&nbsp;162</p>
<p>3.1.2. Energy level thermo–statistics 164</p>
<p>3.1.3. Franck Condon principle&nbsp;164</p>
<p>3.1.4. Non–radiative transitions&nbsp;164</p>
<p>3.1.5. Line width&nbsp;165</p>
<p>3.2. Laser–induced fluorescence principles 168</p>
<p>3.2.1. Absorption kinetics&nbsp;169</p>
<p>3.2.2. Fluorescence signal&nbsp;170</p>
<p>3.2.3. Fluorescence detection&nbsp;173</p>
<p>3.2.4. Absorption along optical path 174</p>
<p>3.2.5. Fluorescence measurement device 175</p>
<p>3.3. Applications of laser–induced fluorescence in gases&nbsp;177</p>
<p>3.3.1. Generalities&nbsp;177</p>
<p>3.3.2. Diatomic molecules&nbsp;178</p>
<p>3.3.3. Poly–Atomic molecular tracers 186</p>
<p>3.4. Laser–induced fluorescence in liquids 202</p>
<p>3.4.1. Principles and modeling&nbsp;202</p>
<p>3.4.2. Fluorescence reabsorption&nbsp;205</p>
<p>3.4.3. Applications to concentration measurement&nbsp;205</p>
<p>3.4.4. Application to temperature measurement 210</p>
<p>3.5. Bibliography&nbsp;218</p>
<p>Chapter 4. Diode Laser Absorption Spectroscopy Techniques&nbsp;&nbsp;223<br /> Ajmal MOHAMED</p>
<p>4.1. High spectral resolution absorption spectroscopy in fluid mechanics&nbsp;223</p>
<p>4.2. Recap on molecular absorption 226</p>
<p>4.2.1. Line profile&nbsp;226</p>
<p>4.2.2. Line strength&nbsp;228</p>
<p>4.3. Absorption spectroscopy bench 229</p>
<p>4.3.1. Emitting optics&nbsp;230</p>
<p>4.3.2. Optical detection&nbsp;234</p>
<p>4.3.3. Spectra processing&nbsp;237</p>
<p>4.4. Applications in hypersonic&nbsp;245</p>
<p>4.4.1. F4 characteristics&nbsp;246</p>
<p>4.4.2. Setup installed at F4&nbsp;248</p>
<p>4.4.3. Results obtained at F4 and HEG&nbsp;249</p>
<p>4.5. Other applications of diode laser absorption spectroscopy&nbsp;250</p>
<p>4.5.1. Combustion applications&nbsp;250</p>
<p>4.5.2. Applications to atmospheric probing 253</p>
<p>4.6. Other devices for diode laser absorption spectroscopy&nbsp;254</p>
<p>4.6.1. Multipass spectrometry&nbsp;254</p>
<p>4.6.2. Spectrometry in a resonant cavity&nbsp;257</p>
<p>4.7. Perspectives and conclusion on diode laser absorption spectroscopy&nbsp;261</p>
<p>4.7.1. Laser source: use of non–cryogenic diodes&nbsp;262</p>
<p>4.7.2. Spatial resolution: use of probe in flow&nbsp;262</p>
<p>4.7.3. Use of frequency combs 264</p>
<p>4.8. Bibliography&nbsp;264</p>
<p>Chapter 5. Nonlinear Optical Sources and Techniques for Optical Diagnostic&nbsp;271<br /> Michel LEFEBVRE</p>
<p>5.1. Introduction to nonlinear optics 271</p>
<p>5.2. Main processes in nonlinear optics 272</p>
<p>5.2.1. Propagation effects&nbsp;273</p>
<p>5.2.2. Second– and third–order nonlinearities&nbsp;276</p>
<p>5.2.3. Phase matching notion&nbsp;280</p>
<p>5.3. Nonlinear sources for optical metrology&nbsp;282</p>
<p>5.3.1. Sum frequency generation and frequency doubling&nbsp;283</p>
<p>5.3.2. Raman converters&nbsp;285</p>
<p>5.3.3. Optical parametric generators and oscillators 289</p>
<p>5.4. Nonlinear techniques for optical diagnostic&nbsp;296</p>
<p>5.4.1. Introduction to four–wave mixing techniques&nbsp;296</p>
<p>5.4.2. Temperature and concentration measurements in four–wave mixing 299</p>
<p>5.4.3. Velocity measurements in four–wave mixing 301</p>
<p>5.5. Bibliography 305</p>
<p>Chapter 6. Laser Safety&nbsp;&nbsp;307<br /> Jean–Michel MOST</p>
<p>6.1. Generalities on laser safety&nbsp;307</p>
<p>6.2. Laser type and classification&nbsp;308</p>
<p>6.3. Laser risks: nature and effects&nbsp;310</p>
<p>6.3.1. Biological risks&nbsp;310</p>
<p>6.3.2. Risks to the eye 312</p>
<p>6.3.3. Risks to the skin 314</p>
<p>6.3.4. Risk to hearing&nbsp;315</p>
<p>6.3.5. Other biological risks&nbsp;315</p>
<p>6.4. Protections&nbsp;316</p>
<p>6.4.1. Accident prevention&nbsp;316</p>
<p>6.4.2. Collective protection 316</p>
<p>6.4.3. Individual protection&nbsp;318</p>
<p>6.5. Safety advice&nbsp;319</p>
<p>6.6. Human behavior 320</p>
<p>Conclusion 321<br /> Alain BOUTIER</p>
<p>Nomenclature&nbsp;323</p>
<p>List of Authors&nbsp;329</p>
<p>Index 331</p>

Rubrieken

    Personen

      Trefwoorden

        Laser Metrology in Fluid Mechanics – Granulometry, temperature and concentration measurements