, , , e.a.

Intracorporeal Robotics: From Milliscale to Nanosc ale

From Milliscale to Nanoscale

Specificaties
Gebonden, 198 blz. | Engels
John Wiley & Sons | e druk, 2014
ISBN13: 9781848213715
Rubricering
John Wiley & Sons e druk, 2014 9781848213715
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

A promising long–term evolution of surgery relies on intracorporeal microrobotics. This book reviews the physical and methodological principles, and the scientific challenges to be tackled to design and control such robots. Three orders of magnitude will be considered, justified by the class of problems encountered and solutions implemented to manipulate objects and reach targets within the body: millimetric, sub–millimetric in the 10– 100 micrometer range, then in the 1–10 micrometer range. The most prominent devices and prototypes of the state of the art will be described to illustrate the benefit that can be expected for surgeons and patients. Future developments nanorobotics will also be discussed.

Specificaties

ISBN13:9781848213715
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:198
Serie:ISTE

Inhoudsopgave

<p>Introduction ix</p>
<p>Chapter 1. Intracorporeal Millirobotics&nbsp;1</p>
<p>1.1. Introduction 1</p>
<p>1.2. Principles 2</p>
<p>1.2.1. Partially intracorporeal devices with active distal mobilities 2</p>
<p>1.2.2. Intracorporeal manipulators 5</p>
<p>1.2.3. Intracorporeal mobile devices&nbsp;16</p>
<p>1.3. Scientific issues 20</p>
<p>1.3.1. Modeling 20</p>
<p>1.3.2. Design&nbsp;24</p>
<p>1.3.3. Actuation and transmission&nbsp;26</p>
<p>1.3.4. Sensing&nbsp;30</p>
<p>1.3.5. Control 34</p>
<p>1.4. Examples of devices 37</p>
<p>1.4.1. The robotic platform of the Araknes project&nbsp;39</p>
<p>1.4.2. A snake–like robot made of concentric super–elastic tubes 44</p>
<p>1.4.3. MICRON: a handheld robotized instrument for ophthalmic surgery 48</p>
<p>1.5. Conclusion&nbsp;52</p>
<p>Chapter 2. Intracorporeal Microrobotics&nbsp;55</p>
<p>2.1. Introduction&nbsp;55</p>
<p>2.2. Novel paradigms for intracorporeal robotics 56</p>
<p>2.2.1. Classification of intracorporeal robots 56</p>
<p>2.2.2. Physical principles in use at microscale 57</p>
<p>2.3. Methods&nbsp;66</p>
<p>2.3.1. Models&nbsp;66</p>
<p>2.3.2. Design&nbsp;71</p>
<p>2.3.3. Actuation 75</p>
<p>2.3.4. Sensing&nbsp;80</p>
<p>2.3.5. Control&nbsp;86</p>
<p>2.4. Devices&nbsp;97</p>
<p>2.4.1. Magnetically guided catheters&nbsp;97</p>
<p>2.4.2. Distal tip mobility for endoluminal microphonosurgery 98</p>
<p>2.4.3. Autonomous active capsules&nbsp;102</p>
<p>2.4.4. Magnetically guided capsules 104</p>
<p>2.5. Conclusion&nbsp;107</p>
<p>Chapter 3. In vitro Non–Contact Mesorobotics&nbsp;109</p>
<p>3.1. Introduction&nbsp;109</p>
<p>3.2. Principles&nbsp;111</p>
<p>3.2.1. Introduction 111</p>
<p>3.2.2. Laser trapping 114</p>
<p>3.2.3. Electrostatic principles&nbsp;118</p>
<p>3.3. Scientific challenges 122</p>
<p>3.3.1. Modeling 122</p>
<p>3.3.2. Design&nbsp;129</p>
<p>3.3.3. Perception 131</p>
<p>3.3.4. Control&nbsp;131</p>
<p>3.4. Experimental devices&nbsp;132</p>
<p>3.4.1. Laser trapping 132</p>
<p>3.4.2. DEP systems 139</p>
<p>3.5. Conclusion 147</p>
<p>Chapter 4. Toward Biomedical Nanorobotics 149</p>
<p>4.1. Applicative challenges 149</p>
<p>4.1.1. In vitro applications&nbsp;149</p>
<p>4.1.2. Nanoassembly for biomedical applications&nbsp;150</p>
<p>4.1.3. In vivo applications&nbsp;150</p>
<p>4.2. Scientific challenges 150</p>
<p>4.2.1. New paradigm removing frontiers between sciences 150</p>
<p>4.2.2. Energy sources 151</p>
<p>4.2.3. How far away is this future? 152</p>
<p>Bibliography&nbsp;153</p>
<p>Index&nbsp;183</p>

Rubrieken

    Personen

      Trefwoorden

        Intracorporeal Robotics: From Milliscale to Nanosc ale