,

Transmission Electron Microscopy in Micro–nanoelectronics

Specificaties
Gebonden, 258 blz. | Engels
John Wiley & Sons | e druk, 2012
ISBN13: 9781848213678
Rubricering
John Wiley & Sons e druk, 2012 9781848213678
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

Today, the availability of bright and highly coherent electron sources and sensitive detectors has radically changed the type and quality of the information which can be obtained by transmission electron microscopy (TEM). TEMs are now present in large numbers not only in academia, but also in industrial research centers and fabs.
This book presents in a simple and practical way the new quantitative techniques based on TEM which have recently been invented or developed to address most of the main challenging issues scientists and process engineers have to face to develop or optimize semiconductor layers and devices. Several of these techniques are based on electron holography; others take advantage of the possibility of focusing intense beams within nanoprobes. Strain measurements and mappings, dopant activation and segregation, interfacial reactions at the nanoscale, defect identification and specimen preparation by FIB are among the topics presented in this book. After a brief presentation of the underlying theory, each technique is illustrated through examples from the lab or fab.

Specificaties

ISBN13:9781848213678
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:258
Serie:ISTE

Inhoudsopgave

<p>Introduction&nbsp; xi</p>
<p>Chapter 1. Active Dopant Profiling in the TEM by Off–Axis Electron Holography&nbsp; 1<br /> David COOPER</p>
<p>1.1. Introduction&nbsp;&nbsp; 1</p>
<p>1.2. The Basics: from electron waves to phase images&nbsp;&nbsp; 3</p>
<p>1.2.1. Electron holography for the measurement of electromagnetic fields&nbsp;&nbsp; 3</p>
<p>1.2.2. The electron source&nbsp;&nbsp; 6</p>
<p>1.2.3. Forming electron holograms using an electron biprism&nbsp;&nbsp; 6</p>
<p>1.2.4. Care of the electron biprism&nbsp;&nbsp;&nbsp; 10</p>
<p>1.2.5. Recording electron holograms&nbsp;&nbsp;&nbsp;&nbsp; 11</p>
<p>1.2.6. Hologram reconstruction&nbsp;&nbsp;&nbsp;&nbsp; 12</p>
<p>1.2.7. Phase Jumps&nbsp;&nbsp; 15</p>
<p>1.3. Experimental electron holography&nbsp;&nbsp;&nbsp;&nbsp; 16</p>
<p>1.3.1. Fringe contrast, sampling and phase sensitivity&nbsp;&nbsp;&nbsp; 16</p>
<p>1.3.2. Optimizing the beam settings for an electron holography experiment&nbsp;&nbsp;&nbsp; 20</p>
<p>1.3.3. Optimizing the field of view using free lens control&nbsp;&nbsp; 21</p>
<p>1.3.4. Energy filtering for electron holography&nbsp;&nbsp; 24</p>
<p>1.3.5. Minimizing diffraction contrast&nbsp;&nbsp;&nbsp; 25</p>
<p>1.3.6. Measurement of the specimen thickness&nbsp;&nbsp; 26</p>
<p>1.3.7. Specimen preparation&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 28</p>
<p>1.3.8. The electrically inactive thickness&nbsp;&nbsp;&nbsp;&nbsp; 30</p>
<p>1.4. Conclusion&nbsp;&nbsp; 33</p>
<p>1.5. Bibliography&nbsp;&nbsp;&nbsp; 33</p>
<p>Chapter 2. Dopant Distribution Quantitative Analysis Using STEM–EELS/EDX Spectroscopy Techniques&nbsp;&nbsp;&nbsp; 37<br /> Roland PANTEL and Germain SERVANTON</p>
<p>2.1. Introduction&nbsp;&nbsp; 37</p>
<p>2.1.1. Dopant analysis challenges in the silicon industry&nbsp;&nbsp; 37</p>
<p>2.1.2. The different dopant quantification and imaging methods&nbsp;&nbsp; 38</p>
<p>2.2. STEM–EELS–EDX experimental challenges for quantitative dopant distribution analysis&nbsp;&nbsp;&nbsp; 41</p>
<p>2.2.1. Instrumentation present state–of–the–art and future challenges&nbsp;&nbsp;&nbsp; 41</p>
<p>2.3. Experimental conditions for STEM spectroscopy impurity detection&nbsp;&nbsp;&nbsp; 43</p>
<p>2.3.1. Radiation damages&nbsp;&nbsp; 43</p>
<p>2.3.2. Particularities of EELS and EDX spectroscopy techniques&nbsp; 44</p>
<p>2.3.3. Equipments used for the STEM–EELS–EDX analyses presented in this chapter&nbsp;&nbsp; 49</p>
<p>2.4. STEM EELS–EDX quantification of dopant distribution application examples&nbsp;&nbsp; 49</p>
<p>2.4.1. EELS application analysis examples&nbsp;&nbsp;&nbsp; 49</p>
<p>2.4.2. EDX application analysis examples&nbsp;&nbsp;&nbsp;&nbsp; 54</p>
<p>2.5. Discussion on the characteristics of STEM–EELS/EDX and data processing&nbsp;&nbsp; 59</p>
<p>2.6. Bibliography&nbsp;&nbsp;&nbsp; 59</p>
<p>Chapter 3. Quantitative Strain Measurement in Advanced Devices: A Comparison Between Convergent Beam Electron Diffraction and Nanobeam Diffraction&nbsp;&nbsp; 65<br /> Laurent CL&Eacute;MENT and Dominique DELILLE</p>
<p>3.1. Introduction&nbsp;&nbsp; 65</p>
<p>3.2 Electron diffraction technique in TEM (CBED and NBD)&nbsp; 66</p>
<p>3.2.1. CBED patterns acquisition and analysis&nbsp;&nbsp; 66</p>
<p>3.2.2. NBD patterns acquisition and analysis&nbsp;&nbsp;&nbsp; 70</p>
<p>3.3. Experimental details&nbsp;&nbsp;&nbsp; 71</p>
<p>3.3.1. Instrumentation and setup&nbsp;&nbsp;&nbsp;&nbsp; 71</p>
<p>3.3.2. Samples description&nbsp; 72</p>
<p>3.4. Results and discussion&nbsp;&nbsp; 72</p>
<p>3.4.1. Strain evaluation in a pMOS transistor integrating eSiGe source and drain a comparison of CBED and NBD techniques&nbsp; 72</p>
<p>3.4.2. Quantitative strain measurement in advanced devices by NBD&nbsp;&nbsp;&nbsp; 75</p>
<p>3.5. Conclusion&nbsp;&nbsp; 78</p>
<p>3.6. Bibliography&nbsp;&nbsp;&nbsp; 78</p>
<p>Chapter 4. Dark–Field Electron Holography for Strain Mapping&nbsp;&nbsp; 81<br /> Martin H TCH, Florent HOUDELLIER, Nikolay CHERKASHIN, Shay REBO, Elsa JAVON, P t c BENZO, Christophe GATEL, Etienne SNOECK and Alain CLAVERIE</p>
<p>4.1. Introduction&nbsp;&nbsp; 81</p>
<p>4.2. Setup for dark–field electron holography&nbsp;&nbsp;&nbsp; 83</p>
<p>4.3. Experimental requirements&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 85</p>
<p>4.4. Strained silicon transistors with recessed sources and drains stressors&nbsp;&nbsp;&nbsp; 87</p>
<p>4.4.1. Strained silicon p–MOSFET&nbsp;&nbsp;&nbsp;&nbsp; 87</p>
<p>4.5. Thin film effect&nbsp;&nbsp; 92</p>
<p>4.6. Silicon implanted with hydrogen&nbsp;&nbsp;&nbsp;&nbsp; 93</p>
<p>4.7. Strained silicon n–MOSFET&nbsp;&nbsp;&nbsp;&nbsp; 94</p>
<p>4.8. Understanding strain engineering&nbsp;&nbsp;&nbsp;&nbsp; 96</p>
<p>4.9. Strained silicon devices relying on stressor layers&nbsp;&nbsp; 97</p>
<p>4.10. 28–nm technology node MOSFETs&nbsp;&nbsp;&nbsp; 99</p>
<p>4.11. FinFET device&nbsp;&nbsp; 101</p>
<p>4.12. Conclusions&nbsp;&nbsp;&nbsp; 103</p>
<p>4.13. Bibliography&nbsp;&nbsp;&nbsp; 103</p>
<p>Chapter 5. Magnetic Mapping Using Electron Holography&nbsp;&nbsp; 107<br /> Etienne SNOECK and Christophe GATEL</p>
<p>5.1. Introduction&nbsp;&nbsp; 107</p>
<p>5.2. Experimental&nbsp;&nbsp;&nbsp; 108</p>
<p>5.2.1. The Lorentz mode&nbsp;&nbsp; 110</p>
<p>5.2.2 The E problem&nbsp;&nbsp; 111</p>
<p>5.3. Hologram analysis: from the phase images to the magnetic properties&nbsp;&nbsp;&nbsp; 118</p>
<p>5.3.1. The simplest case: homogeneous specimen of constant thickness&nbsp;&nbsp;&nbsp; 119</p>
<p>5.3.2. The general case&nbsp;&nbsp; 122</p>
<p>5.4. Resolutions&nbsp;&nbsp; 124</p>
<p>5.4.1. Magnetic measurements accuracy&nbsp;&nbsp;&nbsp;&nbsp; 124</p>
<p>5.4.2. Spatial resolution&nbsp;&nbsp; 126</p>
<p>5.5. One example: FePd (L10) epitaxial thin film exhibiting a perpendicular magnetic anisotropy (PMA)&nbsp;&nbsp;&nbsp;&nbsp; 126</p>
<p>5.6. Prospective and new developments&nbsp;&nbsp;&nbsp;&nbsp; 130</p>
<p>5.6.1. Enhanced signal and resolution&nbsp;&nbsp;&nbsp;&nbsp; 130</p>
<p>5.6.2. In–situ switching&nbsp;&nbsp; 131</p>
<p>5.7. Conclusions&nbsp;&nbsp; 132</p>
<p>5.8. Bibliography&nbsp;&nbsp;&nbsp; 133</p>
<p>Chapter 6. Interdiffusion and Chemical Reaction at Interfaces by TEM/EELS&nbsp; 135<br /> Sylvie SCHAMM–CHARDON</p>
<p>6.1. Introduction&nbsp;&nbsp; 135</p>
<p>6.2. Importance of interfaces in MOSFETs&nbsp;&nbsp;&nbsp;&nbsp; 135</p>
<p>6.3. TEM and EELS&nbsp;&nbsp; 137</p>
<p>6.4. TEM/EELS and study of interdiffusion/chemical reaction at interfaces in microelectronics&nbsp;&nbsp;&nbsp;&nbsp; 137</p>
<p>6.4.1. Thickness measurement&nbsp;&nbsp;&nbsp;&nbsp; 138</p>
<p>6.4.2. Atomic structure analysis&nbsp;&nbsp;&nbsp;&nbsp; 139</p>
<p>6.4.3. EELS analysis&nbsp;&nbsp;&nbsp; 141</p>
<p>6.4.4. Sample preparation&nbsp;&nbsp; 143</p>
<p>6.5. HRTEM/EELS as a support to developments of RE– and TM–based HK thin films on Si and Ge&nbsp;&nbsp;&nbsp;&nbsp; 144</p>
<p>6.5.1. Introduction&nbsp;&nbsp; 144</p>
<p>6.5.2. HRTEM/EELS methodology&nbsp;&nbsp;&nbsp;&nbsp; 145</p>
<p>6.5.3. Illustrations&nbsp;&nbsp; 154</p>
<p>6.6. Conclusion&nbsp;&nbsp; 158</p>
<p>6.7 Bibliography&nbsp;&nbsp;&nbsp; 158</p>
<p>Chapter 7. Characterization of Process–Induced Defects&nbsp;&nbsp;&nbsp; 165<br /> Nikolay CHERKASHIN and Alain CLAVERIE.</p>
<p>7.1. Interfacial dislocations&nbsp;&nbsp; 166</p>
<p>7.1.1. Si(100)/Si(100) direct wafer bonding (DWB)&nbsp;&nbsp; 167</p>
<p>7.1.2. SiGe heterostructures&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 170</p>
<p>7.2. Ion implantation induced defects&nbsp;&nbsp;&nbsp;&nbsp; 172</p>
<p>7.2.1. Defects of interstitial type&nbsp;&nbsp;&nbsp;&nbsp; 173</p>
<p>7.2.2. Defects of vacancy type&nbsp;&nbsp;&nbsp;&nbsp; 187</p>
<p>7.3. Conclusions&nbsp;&nbsp; 193</p>
<p>7.4. Bibliography&nbsp;&nbsp;&nbsp; 193</p>
<p>Chapter 8. In Situ Characterization Methods in Transmission Electron Microscopy&nbsp;&nbsp;&nbsp;&nbsp; 199<br /> Aur&eacute;lien MASSEBOEUF</p>
<p>8.1. Introduction&nbsp;&nbsp; 199</p>
<p>8.2. In situ in a TEM&nbsp;&nbsp; 200</p>
<p>8.2.1. Temperature control and irradiation&nbsp;&nbsp;&nbsp;&nbsp; 201</p>
<p>8.2.2. Electromagnetic field&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 201</p>
<p>8.2.3. Mechanical&nbsp;&nbsp;&nbsp; 202</p>
<p>8.2.4. Chemistry&nbsp;&nbsp;&nbsp; 202</p>
<p>8.2.5. Light&nbsp;&nbsp;&nbsp; 203</p>
<p>8.2.6. Multiple and movable currents&nbsp;&nbsp;&nbsp;&nbsp; 203</p>
<p>8.3. Biasing in a conventional TEM&nbsp;&nbsp;&nbsp; 204</p>
<p>8.3.1. Multiple contacts&nbsp;&nbsp; 204</p>
<p>8.3.2. Movable contacts&nbsp;&nbsp; 206</p>
<p>8.3.3. Comparison&nbsp;&nbsp; 206</p>
<p>8.4. Sample design&nbsp;&nbsp;&nbsp; 208</p>
<p>8.4.1. Focused ion beam&nbsp;&nbsp; 208</p>
<p>8.4.2. TEM windows&nbsp;&nbsp;&nbsp; 209</p>
<p>8.5. Conclusions&nbsp;&nbsp; 211</p>
<p>8.6. Biblioraphy&nbsp;&nbsp; 211</p>
<p>Chapter 9. Specimen Preparation for Semiconductor Analysis&nbsp; 219<br /> David COOPER and G&eacute;rard BEN ASSAYAG</p>
<p>9.1. The focused ion beam tool&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 220</p>
<p>9.2. Ion–sample interaction&nbsp;&nbsp; 221</p>
<p>9.3. Beam currents and energies for specimen preparation&nbsp;&nbsp;&nbsp; 225</p>
<p>9.4. Practical specimen preparation&nbsp;&nbsp;&nbsp; 228</p>
<p>9.5. In situ lift–out&nbsp;&nbsp;&nbsp; 228</p>
<p>9.6. H–bar technique&nbsp;&nbsp; 232</p>
<p>9.7. Broad beam ion milling&nbsp;&nbsp; 233</p>
<p>9.8. Mechanical wedge polishing&nbsp;&nbsp;&nbsp;&nbsp; 235</p>
<p>9.9. Conclusion&nbsp;&nbsp; 235</p>
<p>9.10 Bibliography&nbsp;&nbsp;&nbsp; 236</p>
<p>List of Authors&nbsp;&nbsp;&nbsp; 237</p>
<p>Index&nbsp;&nbsp;&nbsp; 241</p>

Rubrieken

    Personen

      Trefwoorden

        Transmission Electron Microscopy in Micro–nanoelectronics