,

Artificial Materials

Specificaties
Gebonden, 362 blz. | Engels
John Wiley & Sons | e druk, 2012
ISBN13: 9781848213357
Rubricering
John Wiley & Sons e druk, 2012 9781848213357
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

This book addresses artificial materials including photonic crystals (PC) and metamaterials (MM).

The first part is devoted to design concepts: negative permeability and permittivity for negative refraction, periodic structures, transformation optics.

The second part concerns PC and MM in stop band regime: from cavities, guides to high impedance surfaces. Abnormal refraction, less than one and negative, in PC and MM are studied in a third part, addressing super–focusing and cloaking.

Applications for telecommunications, lasers and imaging systems are also explored.

Specificaties

ISBN13:9781848213357
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:362
Serie:ISTE

Inhoudsopgave

<p>Introduction xi</p>
<p>PART 1. A FEW FUNDAMENTAL CONCEPTS 1</p>
<p>Chapter 1. Definitions and Concepts 3</p>
<p>1.1. Effective parameters of materials 3</p>
<p>1.2. Terminology of artificial materials 6</p>
<p>1.3. Negative refraction: stakes and consequences 8</p>
<p>1.4. Bibliography 11</p>
<p>Chapter 2. The Metamaterial Approach Permeability and Permittivity Engineering 13</p>
<p>2.1. Background history 13</p>
<p>2.2. An imbricated lattice approach 17</p>
<p>2.3. Cell approach 23</p>
<p>2.4. Alternative approach: Mie resonances 31</p>
<p>2.5. Bibliography 33</p>
<p>Chapter 3. Photonic Crystal Approach Band Gap Engineering 37</p>
<p>3.1. Historical background 37</p>
<p>3.2. Study tool: band structure 39</p>
<p>3.3. 2D &frac12; photonic crystals 44</p>
<p>3.4. A few words on three–dimensional photonic crystals 53</p>
<p>3.5. Conclusion: metamaterials or photonic crystals? 55</p>
<p>3.6. Bibliography 56</p>
<p>Chapter 4. Transformation Optics 59</p>
<p>4.1. Context 59</p>
<p>4.2. Method description 60</p>
<p>4.3. Bibliography 69</p>
<p>PART 2. MATERIALS USED IN A BAND GAP REGIME 71</p>
<p>Chapter 5. Point and Extended Defects in Photonic Crystals 73</p>
<p>5.1. Context 73</p>
<p>5.2. Defect zoology 74</p>
<p>5.3. Selectivity of photonic crystal microcavities 77</p>
<p>5.4. Waveguiding in photonic crystals 82</p>
<p>5.5. Slowing down light 90</p>
<p>5.6. Bibliography 92</p>
<p>Chapter 6. Routing Devices made from Photonic Crystals 95</p>
<p>6.1. The building brick: the add/drop filter 95</p>
<p>6.2. A few photonic crystal approaches 98</p>
<p>6.3. Interference–based couplers 100</p>
<p>6.4. Conclusion 117</p>
<p>6.5. Bibliography 117</p>
<p>Chapter 7. Single Negative Metamaterials 121</p>
<p>7.1. Context 121</p>
<p>7.2. ENGs: negative permittivity materials 122</p>
<p>7.3. MNGs: negative permeability materials 128</p>
<p>7.4. What of frequency–selective surfaces? 132</p>
<p>7.5. Bibliographyc 135</p>
<p>PART 3. MATERIALS IN AN ABNORMAL REFRACTION REGIME (N &lt; 1 AND N &lt; 0) 137</p>
<p>Chapter 8. Two–dimensional Microwave Balanced Composite Prism 139</p>
<p>8.1. Why use a microwave prism? 139</p>
<p>8.2. Conception and sizing of a balanced composite lattice 140</p>
<p>8.3. Two–dimensional prism 147</p>
<p>8.4. Bibliography 154</p>
<p>Chapter 9. Metal–dielectric Materials from the Terahertz to the Visible 157</p>
<p>9.1. From the terahertz to the infrared 157</p>
<p>9.2. A backward propagation line at terahertz frequency 158</p>
<p>9.3. From nano –resonators to fishnets 163</p>
<p>9.4. Three–dimensional metamaterials 172</p>
<p>9.5. Bibliography 174</p>
<p>Chapter 10. Abnormal Refraction in Photonic Crystals 177</p>
<p>10.1. Context 177</p>
<p>10.2. (An)isotropy in photonic crystals 178</p>
<p>10.3. Exploiting anisotropy 185</p>
<p>10.4. Focalization and negative refraction: looking for isotropy 189</p>
<p>10.5. Bibliography 194</p>
<p>Chapter 11. A Photonic Crystal Flat Lens at Optical Wavelength 197</p>
<p>11.1. A bit of background 197</p>
<p>11.2. How to define a typical prototype at optical wavelengths 198</p>
<p>11.3. Lens optimization: impedance and resolution 201</p>
<p>11.4. Experiments 213</p>
<p>11.5. Reverse engineering: from a two–dimensional prototype to three–dimensional reality 218</p>
<p>11.6. Conclusion 221</p>
<p>11.7. Bibliography 222</p>
<p>Chapter 12. Wave–controlling Systems Towards Bypass and Invisibility 225</p>
<p>12.1. Transformation optics or dispersion engineering 225</p>
<p>12.2. Component approaches for controlling waves 226</p>
<p>12.3. Invisibility at terahertz frequencies: Mie resonances 241</p>
<p>12.4. An alternative with the photonic crystal: the butterfly 246</p>
<p>12.5. Perspectives 250</p>
<p>12.6. Bibliography 250</p>
<p>PART 4. MOVING TOWARD APPLICATIONS 253</p>
<p>Chapter 13. Guiding, Filtering and Routing Electromagnetic Waves 255</p>
<p>13.1. Context 255</p>
<p>13.2. Guiding: propagation lines and tunable phase shifters 256</p>
<p>13.3. Filtering 266</p>
<p>13.4. Metamaterial–based routing 273</p>
<p>13.5. Conclusion 276</p>
<p>13.6. Bibliography 276</p>
<p>Chapter 14. Antennas 279</p>
<p>14.1. Towards the miniaturization of transmission/reception systems 279</p>
<p>14.2. Directivity engineering 280</p>
<p>14.3. Subwavelength sizing 293</p>
<p>14.4. Conclusion 298</p>
<p>14.5. Bibliography 299</p>
<p>Chapter 15. Optics: Fibers and Cavities 301</p>
<p>15.1. Optical issues: the privileged domain of photonic crystals 301</p>
<p>15.2. Microstructured optical fibers 302</p>
<p>15.3. Toward zero threshold lasers 310</p>
<p>15.4. Bibliography 318</p>
<p>Chapter 16. Detection, Imaging and Tomography Systems 321</p>
<p>16.1. From detection to imaging 321</p>
<p>16.2. Terahertz sensors 322</p>
<p>16.3. Direct approach for imaging 326</p>
<p>16.4. Detection and image reconstruction 328</p>
<p>16.5. A vast field to explore 337</p>
<p>16.6. Bibliography 339</p>
<p>Conclusion 341</p>
<p>Index 345</p>

Rubrieken

    Personen

      Trefwoorden

        Artificial Materials