Artificial Materials
Samenvatting
This book addresses artificial materials including photonic crystals (PC) and metamaterials (MM).
The first part is devoted to design concepts: negative permeability and permittivity for negative refraction, periodic structures, transformation optics.
The second part concerns PC and MM in stop band regime: from cavities, guides to high impedance surfaces. Abnormal refraction, less than one and negative, in PC and MM are studied in a third part, addressing super–focusing and cloaking.
Applications for telecommunications, lasers and imaging systems are also explored.
Specificaties
Inhoudsopgave
<p>PART 1. A FEW FUNDAMENTAL CONCEPTS 1</p>
<p>Chapter 1. Definitions and Concepts 3</p>
<p>1.1. Effective parameters of materials 3</p>
<p>1.2. Terminology of artificial materials 6</p>
<p>1.3. Negative refraction: stakes and consequences 8</p>
<p>1.4. Bibliography 11</p>
<p>Chapter 2. The Metamaterial Approach Permeability and Permittivity Engineering 13</p>
<p>2.1. Background history 13</p>
<p>2.2. An imbricated lattice approach 17</p>
<p>2.3. Cell approach 23</p>
<p>2.4. Alternative approach: Mie resonances 31</p>
<p>2.5. Bibliography 33</p>
<p>Chapter 3. Photonic Crystal Approach Band Gap Engineering 37</p>
<p>3.1. Historical background 37</p>
<p>3.2. Study tool: band structure 39</p>
<p>3.3. 2D ½ photonic crystals 44</p>
<p>3.4. A few words on three–dimensional photonic crystals 53</p>
<p>3.5. Conclusion: metamaterials or photonic crystals? 55</p>
<p>3.6. Bibliography 56</p>
<p>Chapter 4. Transformation Optics 59</p>
<p>4.1. Context 59</p>
<p>4.2. Method description 60</p>
<p>4.3. Bibliography 69</p>
<p>PART 2. MATERIALS USED IN A BAND GAP REGIME 71</p>
<p>Chapter 5. Point and Extended Defects in Photonic Crystals 73</p>
<p>5.1. Context 73</p>
<p>5.2. Defect zoology 74</p>
<p>5.3. Selectivity of photonic crystal microcavities 77</p>
<p>5.4. Waveguiding in photonic crystals 82</p>
<p>5.5. Slowing down light 90</p>
<p>5.6. Bibliography 92</p>
<p>Chapter 6. Routing Devices made from Photonic Crystals 95</p>
<p>6.1. The building brick: the add/drop filter 95</p>
<p>6.2. A few photonic crystal approaches 98</p>
<p>6.3. Interference–based couplers 100</p>
<p>6.4. Conclusion 117</p>
<p>6.5. Bibliography 117</p>
<p>Chapter 7. Single Negative Metamaterials 121</p>
<p>7.1. Context 121</p>
<p>7.2. ENGs: negative permittivity materials 122</p>
<p>7.3. MNGs: negative permeability materials 128</p>
<p>7.4. What of frequency–selective surfaces? 132</p>
<p>7.5. Bibliographyc 135</p>
<p>PART 3. MATERIALS IN AN ABNORMAL REFRACTION REGIME (N < 1 AND N < 0) 137</p>
<p>Chapter 8. Two–dimensional Microwave Balanced Composite Prism 139</p>
<p>8.1. Why use a microwave prism? 139</p>
<p>8.2. Conception and sizing of a balanced composite lattice 140</p>
<p>8.3. Two–dimensional prism 147</p>
<p>8.4. Bibliography 154</p>
<p>Chapter 9. Metal–dielectric Materials from the Terahertz to the Visible 157</p>
<p>9.1. From the terahertz to the infrared 157</p>
<p>9.2. A backward propagation line at terahertz frequency 158</p>
<p>9.3. From nano –resonators to fishnets 163</p>
<p>9.4. Three–dimensional metamaterials 172</p>
<p>9.5. Bibliography 174</p>
<p>Chapter 10. Abnormal Refraction in Photonic Crystals 177</p>
<p>10.1. Context 177</p>
<p>10.2. (An)isotropy in photonic crystals 178</p>
<p>10.3. Exploiting anisotropy 185</p>
<p>10.4. Focalization and negative refraction: looking for isotropy 189</p>
<p>10.5. Bibliography 194</p>
<p>Chapter 11. A Photonic Crystal Flat Lens at Optical Wavelength 197</p>
<p>11.1. A bit of background 197</p>
<p>11.2. How to define a typical prototype at optical wavelengths 198</p>
<p>11.3. Lens optimization: impedance and resolution 201</p>
<p>11.4. Experiments 213</p>
<p>11.5. Reverse engineering: from a two–dimensional prototype to three–dimensional reality 218</p>
<p>11.6. Conclusion 221</p>
<p>11.7. Bibliography 222</p>
<p>Chapter 12. Wave–controlling Systems Towards Bypass and Invisibility 225</p>
<p>12.1. Transformation optics or dispersion engineering 225</p>
<p>12.2. Component approaches for controlling waves 226</p>
<p>12.3. Invisibility at terahertz frequencies: Mie resonances 241</p>
<p>12.4. An alternative with the photonic crystal: the butterfly 246</p>
<p>12.5. Perspectives 250</p>
<p>12.6. Bibliography 250</p>
<p>PART 4. MOVING TOWARD APPLICATIONS 253</p>
<p>Chapter 13. Guiding, Filtering and Routing Electromagnetic Waves 255</p>
<p>13.1. Context 255</p>
<p>13.2. Guiding: propagation lines and tunable phase shifters 256</p>
<p>13.3. Filtering 266</p>
<p>13.4. Metamaterial–based routing 273</p>
<p>13.5. Conclusion 276</p>
<p>13.6. Bibliography 276</p>
<p>Chapter 14. Antennas 279</p>
<p>14.1. Towards the miniaturization of transmission/reception systems 279</p>
<p>14.2. Directivity engineering 280</p>
<p>14.3. Subwavelength sizing 293</p>
<p>14.4. Conclusion 298</p>
<p>14.5. Bibliography 299</p>
<p>Chapter 15. Optics: Fibers and Cavities 301</p>
<p>15.1. Optical issues: the privileged domain of photonic crystals 301</p>
<p>15.2. Microstructured optical fibers 302</p>
<p>15.3. Toward zero threshold lasers 310</p>
<p>15.4. Bibliography 318</p>
<p>Chapter 16. Detection, Imaging and Tomography Systems 321</p>
<p>16.1. From detection to imaging 321</p>
<p>16.2. Terahertz sensors 322</p>
<p>16.3. Direct approach for imaging 326</p>
<p>16.4. Detection and image reconstruction 328</p>
<p>16.5. A vast field to explore 337</p>
<p>16.6. Bibliography 339</p>
<p>Conclusion 341</p>
<p>Index 345</p>