Samenvatting
This book describes up–to–date technology applied to high–K materials for More Than Moore applications, i.e. microsystems applied to microelectronics core technologies.
After detailing the basic thermodynamic theory applied to high–K dielectrics thin films including extrinsic effects, this book emphasizes the specificity of thin films. Deposition and patterning technologies are then presented. A whole chapter is dedicated to the major role played in the field by X–Ray Diffraction characterization, and other characterization techniques are also described such as Radio frequency characterization. An in–depth study of the influence of leakage currents is performed together with reliability discussion. Three applicative chapters cover integrated capacitors, variables capacitors and ferroelectric memories. The final chapter deals with a reasonably new research field, multiferroic thin films.
Specificaties
Inhoudsopgave
<p>1.1. Background 1</p>
<p>1.2. The functions of state 2</p>
<p>1.3. Linear equations, piezoelectricity 6</p>
<p>1.4. Nonlinear equations, electrostriction 8</p>
<p>1.5. Thermodynamic modeling of the ferroelectric paraelectric phase transition 9</p>
<p>1.6. Conclusion 24</p>
<p>1.7. Bibliography 25</p>
<p>Chapter 2. Stress Effect on Thin Films 27<br /> Pierre–Eymeric JANOLIN</p>
<p>2.1. Introduction 27</p>
<p>2.2. Modeling the system under consideration 27</p>
<p>2.3. Temperature misfit strain phase diagrams for monodomain films 28</p>
<p>2.4. Domain stability map 35</p>
<p>2.5. Temperature misfit strain phase diagram for polydomain films 48</p>
<p>2.6. Discussion of the nature of the misfit strain 50</p>
<p>2.7. Conclusion 52</p>
<p>2.8. Experimental validation of phase diagrams: state of the art 52</p>
<p>2.9. Case study 53</p>
<p>2.10. Results 53</p>
<p>2.11. Comparison between the experimental data and the temperature misfit strain phase diagrams 60</p>
<p>2.12. Conclusion 65</p>
<p>2.13. Bibliography 66</p>
<p>Chapter 3. Deposition and Patterning Technologies 71<br /> Chrystel DEGUET, Gwenaël LE RHUN, Bertrand VILQUIN and Emmanuel DEFA </p>
<p>3.1. Deposition method 71</p>
<p>3.2. Etching 86</p>
<p>3.3. Contamination 86</p>
<p>3.4. Monocrystalline thin–film transfer 87</p>
<p>3.5. Design of experiments 96</p>
<p>3.6. Conclusion 107</p>
<p>3.7. Bibliography 108</p>
<p>Chapter 4. Analysis Through X–ray Diffraction of Polycrystalline Thin Films 111<br /> Patrice GERGAUD</p>
<p>4.1. Introduction 111</p>
<p>4.2. Some reminders of x–ray diffraction and crystallography 112</p>
<p>4.3. Application to powder or polycrystalline thin–films 122</p>
<p>4.4. Phase analysis by X–ray diffraction 126</p>
<p>4.5. Identification of coherent domain sizes of diffraction and micro–strains 132</p>
<p>4.6. Identification of crystallographic textures by X–ray diffraction 139</p>
<p>4.7. Determination of strains/stresses by X–ray diffraction 146</p>
<p>4.8. Bibliography 156</p>
<p>Chapter 5. Physicochemical and Electrical Characterization 159<br /> Gwenaël LE RHUN, Brahim DKHIL and Pascale GEMEINER</p>
<p>5.1. Introduction 159</p>
<p>5.2. Useful characterization techniques 159</p>
<p>5.3. Ferroelectric measurement 170</p>
<p>5.4. Dielectric measurement 177</p>
<p>5.5. Bibliography 180</p>
<p>Chapter 6. Radio–Frequency Characterization 183<br /> Thierry LACREVAZ</p>
<p>6.1. Introduction 183</p>
<p>6.2. Notions and basic concepts associated with HF 184</p>
<p>6.3. Frequency analysis: HF characterization of materials 204</p>
<p>6.4. Bibliography 211</p>
<p>Chapter 7. Leakage Currents in PZT Capacitors 213<br /> Emilien BOUYSSOU</p>
<p>7.1. Introduction 213</p>
<p>7.2. Leakage current in metal/insulator/metal structures 215</p>
<p>7.3. Problem of leakage current measurement 225</p>
<p>7.4. Characterization of the relaxation current 233</p>
<p>7.5. Literature review of true leakage current in PZT 237</p>
<p>7.6. Dynamic characterization of true leakage current: I(t, T) 239</p>
<p>7.7. Static characterization of the true leakage current: I(V,T) 263</p>
<p>7.8. Conclusion 273</p>
<p>7.9. Bibliography 275</p>
<p>Chapter 8. Integrated Capacitors 281<br /> Emmanuel DEFA </p>
<p>8.1. Introduction 281</p>
<p>8.2. Potentiality of perovskites for RF devices: permittivity and losses 283</p>
<p>8.3. Bi–dielectric capacitors with high linearity 294</p>
<p>8.4. STO capacitors integrated on CMOS substrate by AIC technology 298</p>
<p>8.5. Bibliography 303</p>
<p>Chapter 9. Reliability of PZT Capacitors 305<br /> Emilien BOUYSSOU</p>
<p>9.1. Introduction 305</p>
<p>9.2. Accelerated aging of metal/insulator/metal structures 307</p>
<p>9.3. Accelerated aging of PZT capacitors through CVS tests 316</p>
<p>9.4. Lifetime extrapolation of PZT capacitors 325</p>
<p>9.5. Conclusion 335</p>
<p>9.6. Bibliography 336</p>
<p>Chapter 10. Ferroelectric Tunable Capacitors 341<br /> Benoit GUIGUES</p>
<p>10.1. Introduction 341</p>
<p>10.2. Overview of the tunable capacitors 342</p>
<p>10.3. Types of actual tunable capacitors 355</p>
<p>10.4. Toward new tunable capacitors 366</p>
<p>10.5. Bibliography 375</p>
<p>Chapter 11. FRAM Ferroelectric Memories: Basic Operations, Limitations, Innovations and Applications 379<br /> Christophe MULLER</p>
<p>11.1. Taxonomy of non–volatile memories 379</p>
<p>11.2. FRAM memories: basic operations and limitations 383</p>
<p>11.3. Technologies available in 2011 387</p>
<p>11.4. Technological innovations 388</p>
<p>11.5. Some application areas of FRAM technology 394</p>
<p>11.6. Conclusion 396</p>
<p>11.7. Bibliography 397</p>
<p>Chapter 12. Integration of Multiferroic BiFeO3 Thin Films into Modern Microelectronics 403<br /> Xiaohong ZHU</p>
<p>12.1. Introduction 403</p>
<p>12.2. Preparation methods 407</p>
<p>12.3. Ferroelectricity and magnetism 416</p>
<p>12.4. Device applications 427</p>
<p>12.5. Bibliography 436</p>
<p>List of Authors 443</p>
<p>Index 445</p>