Dielectric Materials for Electrical Engineering

Specificaties
Gebonden, 598 blz. | Engels
John Wiley & Sons | e druk, 2010
ISBN13: 9781848211650
Rubricering
John Wiley & Sons e druk, 2010 9781848211650
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric polymers.

Specificaties

ISBN13:9781848211650
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:598
Serie:ISTE

Inhoudsopgave

<p>PART 1. GENERAL PHYSICS PHENOMENA 1</p>
<p>Chapter 1. Physics of Dielectrics 3<br /> Guy BLAISE and Daniel TREHEUX</p>
<p>1.1. Definitions 3</p>
<p>1.2. Different types of polarization 4</p>
<p>1.3. Macroscopic aspects of the polarization 8</p>
<p>1.4. Bibliography 16</p>
<p>Chapter 2. Physics of Charged Dielectrics: Mobility and Charge Trapping 17<br /> Guy BLAISE and Daniel TREHEUX</p>
<p>2.1. Introduction 17</p>
<p>2.2. Localization of a charge in an ideally perfect and pure polarizable medium 18</p>
<p>2.3. Localization and trapping of carriers in a real material 26</p>
<p>2.4. Detrapping 33</p>
<p>2.5. Bibliography 35</p>
<p>Chapter 3. Conduction Mechanisms and Numerical Modeling of Transport in Organic Insulators: Trends and Perspectives 37<br /> Fulbert BAUDOIN, Christian LAURENT, S&eacute;verine LE ROY and Gilbert TEYSSEDRE</p>
<p>3.1. Introduction 37</p>
<p>3.2. Molecular modeling applied to polymers 40</p>
<p>3.3. Macroscopic models 51</p>
<p>3.4. Trends and perspectives 63</p>
<p>3.5. Conclusions 68</p>
<p>3.6. Bibliography 69</p>
<p>Chapter 4. Dielectric Relaxation in Polymeric Materials 79<br /> Eric DANTRAS, J&eacute;r&ocirc;me MENEGOTTO, Philippe DEMONT and Colette LACABANNE</p>
<p>4.1. Introduction 79</p>
<p>4.2. Dynamics of polarization mechanisms 79</p>
<p>4.3. Orientation polarization in the time domain 81</p>
<p>4.4. Orientation polarization in the frequency domain 83</p>
<p>4.5. Temperature dependence 87</p>
<p>4.6. Relaxation modes of amorphous polymers 92</p>
<p>4.7. Relaxation modes of semi–crystalline polymers 96</p>
<p>4.8. Conclusion 98</p>
<p>4.9. Bibliography 99</p>
<p>Chapter 5. Electrification 101<br /> G&eacute;rard TOUCHARD</p>
<p>5.1. Introduction 101</p>
<p>5.2. Electrification of solid bodies by separation/contact 101</p>
<p>5.3. Electrification of solid particles 108</p>
<p>5.4. Conclusion 115</p>
<p>5.5. Bibliography 115</p>
<p>PART 2. PHENOMENA ASSOCIATED WITH ENVIRONMENTAL STRESS AGEING 117</p>
<p>Chapter 6. Space Charges: Definition, History, Measurement 119<br /> Alain TOUREILLE, Petru NOTINGHER, J&eacute;r&ocirc;me CASTELLON and Serge AGNEL</p>
<p>6.1. Introduction 119</p>
<p>6.2. History 120</p>
<p>6.3. Space charge measurement methods in solid insulators 123</p>
<p>6.4. Trends and perspectives 129</p>
<p>6.5. Bibliography 130</p>
<p>Chapter 7. Dielectric Materials under Electron Irradiation in a Scanning Electron Microscope 135<br /> Omar JBARA, Slim FAKHFAKH, S&eacute;bastien RONDOT and Dominique MOUZE</p>
<p>7.1. Introduction 135</p>
<p>7.2. Fundamental aspects of electron irradiation of solids 136</p>
<p>7.3. Physics of insulators 141</p>
<p>7.4. Applications: measurement of the trapped charge or the surface potential 153</p>
<p>7.5. Conclusion 159</p>
<p>7.6. Bibliography 160</p>
<p>Chapter 8. Precursory Phenomena and Dielectric Breakdown of Solids 165<br /> Christian MAYOUX, Nadine LAHOUD, Laurent BOUDOU and Juan MARTINEZ–VEGA</p>
<p>8.1. Introduction 165</p>
<p>8.2. Electrical breakdown 166</p>
<p>8.3. Precursory phenomena 168</p>
<p>8.4. Conclusion 179</p>
<p>8.5. Bibliography 180</p>
<p>Chapter 9. Models for Ageing of Electrical Insulation: Trends and Perspectives 189<br /> Nadine LAHOUD, Laurent BOUDOU, Christian MAYOUX and Juan MARTINEZ–VEGA</p>
<p>9.1. Introduction 189</p>
<p>9.2. Kinetic approach according to Zhurkov 190</p>
<p>9.3. Thermodynamic approach according to Crine 195</p>
<p>9.4. Microscopic approach according to Dissado Mazzanti Montanari 200</p>
<p>9.5. Conclusions and perspectives 206</p>
<p>9.6. Bibliography 207</p>
<p>PART 3. CHARACTERIZATION METHODS AND MEASUREMENT 209</p>
<p>Chapter 10. Response of an Insulating Material to an Electric Charge: Measurement and Modeling 211<br /> Philippe MOLINI&Eacute;</p>
<p>10.1. Introduction 211</p>
<p>10.2. Standard experiments 212</p>
<p>10.3. Basic electrostatic equations 213</p>
<p>10.4. Dipolar polarization 215</p>
<p>10.5. Intrinsic conduction 218</p>
<p>10.6. Space charge, injection and charge transport 220</p>
<p>10.7. Which model for which material? 226</p>
<p>10.8. Bibliography 227</p>
<p>Chapter 11. Pulsed Electroacoustic Method: Evolution and Development Perspectives for Space Charge Measurement 229<br /> Virginie GRISERI</p>
<p>11.1. Introduction 229</p>
<p>11.2. Principle of the method 230</p>
<p>11.3. Performance of the method 238</p>
<p>11.4. Diverse measurement systems 239</p>
<p>11.5. Development perspectives and conclusions 246</p>
<p>11.6. Bibliography 246</p>
<p>Chapter 12. FLIMM and FLAMM Methods: Localization of 3–D Space Charges at the Micrometer Scale 251<br /> Anca PETRE, Didier MARTY–DESSUS, Laurent BERQUEZ and Jean–Luc FRANCESCHI</p>
<p>12.1. Introduction 251</p>
<p>12.2. The FLIMM method 252</p>
<p>12.3. The FLAMM method 254</p>
<p>12.4. Modeling of the thermal gradient 255</p>
<p>12.5. Mathematical deconvolution 255</p>
<p>12.6. Results 258</p>
<p>12.7. Conclusion 267</p>
<p>12.8. Bibliography 267</p>
<p>Chapter 13. Space Charge Measurement by the Laser–Induced Pressure Pulse Technique 271<br /> David MALEC</p>
<p>13.1. Introduction 271</p>
<p>13.2. History 272</p>
<p>13.3. Establishment of fundamental equations for the determination of space charge distribution 272</p>
<p>13.4. Experimental setup 276</p>
<p>13.5. Performances and limitations 282</p>
<p>13.6. Examples of use of the method 283</p>
<p>13.7. Use of the LIPP method for surface charge measurement 285</p>
<p>13.8. Perspectives 285</p>
<p>13.9. Bibliography 285</p>
<p>Chapter 14. The Thermal Step Method for Space Charge Measurements 289<br /> Alain TOUREILLE, Serge AGNEL, Petru NOTINGHER and J&eacute;r&ocirc;me CASTELLON</p>
<p>14.1. Introduction 289</p>
<p>14.2. Principle of the thermal step method (TSM) 290</p>
<p>14.3. Numerical resolution methods 297</p>
<p>14.4. Experimental set–up 299</p>
<p>14.5. Applications 306</p>
<p>14.6. Conclusion 321</p>
<p>14.7. Bibliography 322</p>
<p>Chapter 15. Physico–Chemical Characterization Techniques of Dielectrics 325<br /> Christine MAYOUX and Christian MAYOUX</p>
<p>15.1. Introduction 325</p>
<p>15.2. Domains of application 326</p>
<p>15.3. The materials themselves 333</p>
<p>15.4. Conclusion 340</p>
<p>15.5. Bibliography 341</p>
<p>Chapter 16. Insulating Oils for Transformers 347<br /> Abderrahmane BEROUAL, Christophe PERRIER, Jean–Luc BESSEDE</p>
<p>16.1. Introduction 347</p>
<p>16.2. Generalities 348</p>
<p>16.3. Mineral oils 352</p>
<p>16.4. Synthetic esters or pentaerythritol ester 357</p>
<p>16.5. Silicone oils or PDMS 363</p>
<p>16.6. Halogenated hydrocarbons or PCB 366</p>
<p>16.7. Natural esters or vegetable oils 367</p>
<p>16.8. Security of employment of insulating oils 370</p>
<p>16.9. Conclusion and perspectives 373</p>
<p>16.10. Bibliography 374</p>
<p>Chapter 17. Electrorheological Fluids 379<br /> Jean–Numa FOULC</p>
<p>17.1. Introduction 379</p>
<p>17.2. Electrorheology 381</p>
<p>17.3. Mechanisms and modeling of the electrorheological effect 387</p>
<p>17.4. The conduction model 392</p>
<p>17.5. Giant electrorheological effect 396</p>
<p>17.6. Conclusion 397</p>
<p>17.7. Bibliography 397</p>
<p>Chapter 18. Electrolytic Capacitors 403<br /> Pascal VENET</p>
<p>18.1. Introduction 403</p>
<p>18.2. Generalities 404</p>
<p>18.3. Electrolytic capacitors 410</p>
<p>18.4. Aluminum liquid electrolytic capacitors 411</p>
<p>18.5. (Solid electrolyte) tantalum electrolytic capacitors 414</p>
<p>18.6. Models and characteristics 417</p>
<p>18.7. Failures of electrolytic capacitors 426</p>
<p>18.8. Conclusion and perspectives 431</p>
<p>18.9. Bibliography 432</p>
<p>Chapter 19. Ion Exchange Membranes for Low Temperature Fuel Cells 435<br /> Vicente COMPA&Ntilde; MORENO and Evaristo RIANDE GARCIA</p>
<p>19.1. Introduction 435</p>
<p>19.2. Homogenous cation–exchange membranes 438</p>
<p>19.3. Heterogenous ion exchange membranes 439</p>
<p>19.4. Polymer/acid membranes 441</p>
<p>19.5. Characterization of membranes 442</p>
<p>19.6. Experimental characterization of ion exchange membranes 457</p>
<p>19.7. Determination of membrane morphology using the SEM technique 469</p>
<p>19.8. Thermal stability 470</p>
<p>19.9. Acknowledgements 471</p>
<p>19.10. Bibliography 472</p>
<p>Chapter 20. Semiconducting Organic Materials for Electroluminescent Devices and Photovoltaic Conversion 477<br /> Pascale JOLINAT and Isabelle SEGUY</p>
<p>20.1. Brief history 477</p>
<p>20.2. Origin of conduction in organic semiconductors 479</p>
<p>20.3. Electrical and optical characteristics of organic semiconductors 480</p>
<p>20.4. Application to electroluminescent devices 482</p>
<p>20.5. Application to photovoltaic conversion 486</p>
<p>20.6. The processing of organic semiconductors 489</p>
<p>20.7. Conclusion 491</p>
<p>20.8. Bibliography 491</p>
<p>Chapter 21. Dielectric Coatings for the Thermal Control of Geostationary Satellites: Trends and Problems 495<br /> St&eacute;phanie REMAURY</p>
<p>21.1. Introduction 495</p>
<p>21.2. Space environment 496</p>
<p>21.3. The thermal control of space vehicles 501</p>
<p>21.4. Electrostatic phenomena in materials 503</p>
<p>21.5. Conclusion 512</p>
<p>21.6. Bibliography 513</p>
<p>Chapter 22. Recycling of Plastic Materials 515<br /> Pilar MARTINEZ and Eva VERDEJO</p>
<p>22.1. Introduction 515</p>
<p>22.2. Plastic materials 516</p>
<p>22.3. Plastic residues 519</p>
<p>22.4. Bibliography 529</p>
<p>Chapter 23. Piezoelectric Polymers and their Applications 531<br /> Alain BERNES</p>
<p>23.1. Introduction 531</p>
<p>23.2. Piezoelectric polymeric materials 532</p>
<p>23.3. Electro–active properties of piezoelectric polymers 538</p>
<p>23.4. Piezoelectricity applications 549</p>
<p>23.5. Transducers 551</p>
<p>23.6. Conclusion 556</p>
<p>23.7. Bibliography 556</p>
<p>Chapter 24. Polymeric Insulators in the Electrical Engineering Industry: Examples of Applications, Constraints and Perspectives 559<br /> Jean–Luc BESSEDE</p>
<p>24.1. Introduction 559</p>
<p>24.2. Equipment 560</p>
<p>24.3. Power transformer insulation 565</p>
<p>24.4. Perspectives 567</p>
<p>24.5. Conclusion 570</p>
<p>24.6. Bibliography 570</p>
<p>List of Authors 573</p>
<p>Index 577</p>

Rubrieken

    Personen

      Trefwoorden

        Dielectric Materials for Electrical Engineering