Environmental Hydraulics – Mathematical Models V 2

Mathematical Models

Specificaties
Gebonden, 570 blz. | Engels
John Wiley & Sons | 0e druk, 2010
ISBN13: 9781848211544
Rubricering
John Wiley & Sons 0e druk, 2010 9781848211544
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This series of five volumes proposes an integrated description of physical processes modeling used by scientific disciplines from meteorology to coastal morphodynamics. Volume 1 describes the physical processes and identifies the main measurement devices used to measure the main parameters that are indispensable to implement all these simulation tools. Volume 2 presents the different theories in an integrated approach: mathematical models as well as conceptual models, used by all disciplines to represent these processes. Volume 3 identifies the main numerical methods used in all these scientific fields to translate mathematical models into numerical tools. Volume 4 is composed of a series of case studies, dedicated to practical applications of these tools in engineering problems. To complete this presentation, volume 5 identifies and describes the modeling software in each discipline.

Specificaties

ISBN13:9781848211544
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:570
Druk:0
Serie:ISTE

Inhoudsopgave

<p>Introduction xix<br /> Jean–Michel TANGUY</p>
<p>Chapter 1. Reminders on the Mechanical Properties of Fluids 1<br /> Jacques GEORGE</p>
<p>1.1. Laws of conservation, principles and general theorems 1</p>
<p>1.2. Enthalpy, rotation, mixing, saturation 13</p>
<p>1.3. Thermodynamic relations, relations of state and laws of behavior 20</p>
<p>1.4. Turbulent flow 26</p>
<p>1.5. Dynamics of geophysical fluids 30</p>
<p>Chapter 2. 3D Navier–Stokes Equations 35<br /> V&eacute;ronique DUCROCQ</p>
<p>2.1. The continuity hypothesis 35</p>
<p>2.2. Lagrangian description/Eulerian description 36</p>
<p>2.3. The continuity equation 37</p>
<p>2.4. The movement quantity assessment equation 38</p>
<p>2.5. The energy balance equation 41</p>
<p>2.6. The equation of state 41</p>
<p>2.7. Navier–Stokes equations for a fluid in rotation 41</p>
<p>Chapter 3. Models of the Atmosphere 43<br /> Jean COIFFIER</p>
<p>3.1. Introduction 43</p>
<p>3.2. The various simplifications and corresponding models 44</p>
<p>3.3. The equations with various systems of coordinates 56</p>
<p>3.4. Some typical conformal projections 61</p>
<p>3.5. The operational models 67</p>
<p>3.6. Bibliography 69</p>
<p>Chapter 4. Hydrogeologic Models 71<br /> Dominique THI&Eacute;RY</p>
<p>4.1. Equation of fluid mechanics 71</p>
<p>4.2. Continuity equation in porous media 72</p>
<p>4.3. Navier–Stokes equations 74</p>
<p>4.4. Darcy s law 76</p>
<p>4.5. Calculating mass storage from the equations of state 80</p>
<p>4.6. General equation of hydrodynamics in porous media 82</p>
<p>4.7. Flows in unsaturated media 84</p>
<p>4.8. Bibliography 91</p>
<p>Chapter 5. Fluvial and Maritime Currentology Models 93<br /> Jean–Michel TANGUY</p>
<p>5.1. 3D hydrostatic model 99</p>
<p>5.2. 2D horizontal model for shallow water 107</p>
<p>5.3. 1D models of fluvial flows 119</p>
<p>5.4. Putting 1D models into real time 131</p>
<p>5.5. Bibliography 151</p>
<p>Chapter 6. Urban Hydrology Models 155<br /> Bernard CHOCAT</p>
<p>6.1. Global models and detailed models used in surface flows 156</p>
<p>6.2. Rainfall representation and rainfall–flow transformation 161</p>
<p>6.3. Modeling of the losses into the ground 164</p>
<p>6.4. Transfer function 169</p>
<p>6.5. Modeling of the hydraulic operating conditions of the networks 177</p>
<p>6.6. Production and transport of polluting agents 189</p>
<p>6.7. Conclusion 205</p>
<p>6.8. Bibliography 206</p>
<p>Chapter 7. Tidal Model and Tide Streams 213<br /> Bernard SIMON</p>
<p>7.1. Tidal coefficient 214</p>
<p>7.2. Non–harmonic methods 215</p>
<p>7.3. Compatibilities 216</p>
<p>7.4. Tidal coefficient 222</p>
<p>7.5. Modeling 223</p>
<p>7.6. Tidal currents 226</p>
<p>Chapter 8. Wave Generation and Coastal Current Models 235<br /> Jean–Michel TANGUY, Jean–Michel LEF&Egrave;VRE and Philippe SERGENT</p>
<p>8.1. Types of swell models 235</p>
<p>8.2. Spectral approach in high waters 242</p>
<p>8.3. Wave generation models 246</p>
<p>8.4. Wave propagation models 260</p>
<p>8.5. Agitating models within the harbors 266</p>
<p>8.6. Non–linear wave model: Boussinesq model 298</p>
<p>8.7. Coastal current models influenced or created by the swell 320</p>
<p>8.8. Bibliography 325</p>
<p>Chapter 9. Solid Transport Models and Evolution of the Seabed 335<br /> Beno&icirc;t LE GUENNEC and Jean–Michel TANGUY</p>
<p>9.1. Transport due to the overthrust effect 338</p>
<p>9.2. Total load 344</p>
<p>9.3. Bed forms and roughness 344</p>
<p>9.4. Suspension transport 346</p>
<p>9.5. Evolution model of movable beds 357</p>
<p>9.6. Conclusion 364</p>
<p>9.7. Bibliography 364</p>
<p>Chapter 10. Oil Spill Models 371<br /> Pierre DANIEL</p>
<p>10.1. Behavior of hydrocarbons in marine environment 371</p>
<p>10.2. Oil spill drift models 372</p>
<p>10.3. Example: the MOTHY model 375</p>
<p>10.4. Calculation algorithm of the path of polluting particles 378</p>
<p>10.5. Example of a drift prediction map 379</p>
<p>10.6. Bibliography 379</p>
<p>Chapter 11. Conceptual, Empirical and Other Models 381<br /> Christelle ALOT and Florence HABETS</p>
<p>11.1. Evapotranspiration 382</p>
<p>11.2. Bibliography 394</p>
<p>Chapter 12. Reservoir Models in Hydrology 397<br /> Patrick FOURMIGU&Eacute; and Patrick ARNAUD</p>
<p>12.1. Background 397</p>
<p>12.2. Main principles 399</p>
<p>12.3. Mathematical tools 401</p>
<p>12.4. Forecasting 403</p>
<p>12.5. Integration of the spatial information 405</p>
<p>12.6. Modeling limits 406</p>
<p>12.7. Bibliography 406</p>
<p>Chapter 13. Reservoir Models in Hydrogeology 409<br /> Dominique THI&Eacute;RY</p>
<p>13.1. Principles and objectives 409</p>
<p>13.2. Catchment basin 410</p>
<p>13.3. Setting the model up 411</p>
<p>13.4. Data and parameters 412</p>
<p>13.5. Application domains 412</p>
<p>Chapter 14. Artificial Neural Network Models 419<br /> Anne JOHANNET</p>
<p>14.1. Neural networks: a rapidly changing domain 420</p>
<p>14.2. Neuron and architecture models 422</p>
<p>14.3. How to take into account the non–linearity 429</p>
<p>14.4. Case study: identification of the rainfall–runoff relation of a karst 434</p>
<p>14.5. Acknowledgments 441</p>
<p>14.6. Bibliography 441</p>
<p>Chapter 15. Model Coupling 445<br /> Rachid ABABOU, Denis DARTUS and Jean–Michel TANGUY</p>
<p>15.1. Model coupling 446</p>
<p>15.2. Bibliography 488</p>
<p>Chapter 16. A Set of Hydrological Models 493<br /> Charles PERRIN, Claude MICHEL and Vasken ANDR&Eacute;ASSIAN</p>
<p>16.1. Introduction 493</p>
<p>16.2. Description of the annual GR1A rainfall–runoff model 495</p>
<p>16.3. Description of the monthly GR2M rainfall–runoff model 496</p>
<p>16.4. Description of the daily GR4J rainfall–runoff model 500</p>
<p>16.5. Applications of the models 505</p>
<p>16.6. Conclusions and future work 506</p>
<p>16.7. Bibliography 507</p>
<p>List of Authors 511</p>
<p>Index 515</p>
<p>General Index of Authors 517</p>
<p>Summary of the Other Volumes in the Series 519</p>

Rubrieken

    Personen

      Trefwoorden

        Environmental Hydraulics – Mathematical Models V 2