Tomography
Samenvatting
The principle of tomography is to explore the structure and composition of objects non–destructively along spatial and temporal dimensions, using penetrating radiation, such as X– and gamma–rays, or waves, such as electromagnetic and acoustic waves. Based on computer–assisted image reconstruction, tomography provides maps of parameters that characterize the emission of the employed radiation or waves, or their interaction with the examined objects, for one or several cross–sections. Thus, it gives access to the inner structure of inert objects and living organisms in their full complexity. In this book, multidisciplinary specialists explain the foundations and principles of tomographic imaging and describe a broad range of applications. The content is organized in five parts, which are dedicated to image reconstruction, microtomography, industrial tomography, morphological medical tomography and functional medical tomography.
Specificaties
Inhoudsopgave
<p>Notation xxi</p>
<p>Chapter 1. Introduction to Tomography 1<br /> Pierre GRANGEAT</p>
<p>1.1. Introduction 1</p>
<p>1.2. Observing contrasts 2</p>
<p>1.3. Localization in space and time 7</p>
<p>1.4. Image reconstruction 9</p>
<p>1.5. Application domains 12</p>
<p>1.6. Bibliography 17</p>
<p>PART 1. IMAGE RECONSTRUCTION 21</p>
<p>Chapter 2. Analytical Methods 23<br /> Michel DEFRISE and Pierre GRANGEAT</p>
<p>2.1. Introduction 23</p>
<p>2.2. 2D Radon transform in parallel–beam geometry 25</p>
<p>2.3. 2D Radon transform in fan–beam geometry 32</p>
<p>2.4. 3D X–ray transform in parallel–beam geometry 37</p>
<p>2.5. 3D Radon transform 40</p>
<p>2.6. 3D positron emission tomography 42</p>
<p>2.7. X–ray tomography in cone–beam geometry 46</p>
<p>2.8. Dynamic tomography 54</p>
<p>2.9. Bibliography . 58</p>
<p>Chapter 3. Sampling Conditions in Tomography 63<br /> Laurent DESBAT and Catherine MENNESSIER</p>
<p>3.1. Sampling of functions in R6 3</p>
<p>3.2. Sampling of the 2D Radon transform 71</p>
<p>3.3. Sampling in 3D tomography 79</p>
<p>3.4. Bibliography 85</p>
<p>Chapter 4. Discrete Methods 89<br /> Habib BENALI and Françoise PEYRIN</p>
<p>4.1. Introduction 89</p>
<p>4.2. Discrete models 90</p>
<p>4.3. Algebraic methods 92</p>
<p>4.4. Statistical methods 99</p>
<p>4.5. Example of tomographic reconstruction 110</p>
<p>4.6. Discussion and conclusion 110</p>
<p>4.7. Bibliography 112</p>
<p>PART 2. MICROTOMOGRAPHY 117</p>
<p>Chapter 5. Tomographic Microscopy 119<br /> Yves USSON and Catherine SOUCHIER</p>
<p>5.1. Introduction 119</p>
<p>5.2. Projection tomography in electron microscopy 120</p>
<p>5.3. Tomography by optical sectioning 121</p>
<p>5.4. 3D data processing, reconstruction and analysis 129</p>
<p>5.5. Bibliography 138</p>
<p>Chapter 6. Optical Tomography 141<br /> Christian DEPEURSINGE</p>
<p>6.1. Introduction 141</p>
<p>6.2. Interaction of light with matter 142</p>
<p>6.3. Propagation of photons in diffuse media 150</p>
<p>6.4. Optical tomography methods 164</p>
<p>6.5. Optical tomography in highly diffuse media 181</p>
<p>6.6. Bibliography 190</p>
<p>Chapter 7. Synchrotron Tomography 197<br /> Anne–Marie CHARVET and Françoise PEYRIN</p>
<p>7.1. Introduction 197</p>
<p>7.2. Synchrotron radiation 197</p>
<p>7.3. Quantitative tomography 202</p>
<p>7.4. Microtomography using synchrotron radiation 206</p>
<p>7.5. Extensions 210</p>
<p>7.6. Conclusion 211</p>
<p>7.7. Bibliography 212</p>
<p>PART 3. INDUSTRIAL TOMOGRAPHY 215</p>
<p>Chapter 8. X–ray Tomography in Industrial Non–destructive Testing 217<br /> Gilles PEIX, Philippe DUVAUCHELLE and Jean–Michel LETANG</p>
<p>8.1. Introduction 217</p>
<p>8.2. Physics of the measurement 218</p>
<p>8.3. Sources of radiation 219</p>
<p>8.4. Detection 220</p>
<p>8.5. Reconstruction algorithms and artifacts 223</p>
<p>8.6. Applications 224</p>
<p>8.7. Conclusion 235</p>
<p>8.8. Bibliography 236</p>
<p>Chapter 9. Industrial Applications of Emission Tomography for Flow Visualization 239<br /> Samuel LEGOUPIL and Ghislain PASCAL</p>
<p>9.1. Industrial applications of emission tomography 239</p>
<p>9.2. Examples of applications 242</p>
<p>9.3. Physical model of data acquisition 247</p>
<p>9.4. Definition and characterization of a system 252</p>
<p>9.5. Conclusion 255</p>
<p>9.6. Bibliography 255</p>
<p>PART 4.MORPHOLOGICAL MEDICAL TOMOGRAPHY 257</p>
<p>Chapter 10. Computed Tomography 259<br /> Jean–Louis AMANS and Gilbert FERRETTI</p>
<p>10.1. Introduction 259</p>
<p>10.2. Physics of helical tomography 265</p>
<p>10.3. Applications of volume CT 272</p>
<p>10.4. Conclusion 279</p>
<p>10.5. Bibliography 280</p>
<p>Chapter 11. Interventional X–ray Volume Tomography 287<br /> Michael GRASS, RégisGUILLEMAUD and Volker RASCHE</p>
<p>11.1. Introduction 287</p>
<p>11.2. Example of 3D angiography 290</p>
<p>11.3. Clinical examples 297</p>
<p>11.4. Conclusion 302</p>
<p>11.5. Bibliography 303</p>
<p>Chapter 12. Magnetic Resonance Imaging 307<br /> André BRIGUET and Didier REVEL</p>
<p>12.1. Introduction 307</p>
<p>12.2. Nuclear paramagnetism and its measurement 308</p>
<p>12.3. Spatial encoding of the signal and image reconstruction 312</p>
<p>12.4. Contrast factors and examples of applications 318</p>
<p>12.5. Tomography or volumetry? 323</p>
<p>12.6. Bibliography 323</p>
<p>PART 5. FUNCTIONAL MEDICAL TOMOGRAPHY 327</p>
<p>Chapter 13. Single Photon Emission Computed Tomography 329<br /> Irène BUVAT, Jacques DARCOURT and Philippe FRANKEN</p>
<p>13.1. Introduction 329</p>
<p>13.2. Radiopharmaceuticals 330</p>
<p>13.3. Detector 331</p>
<p>13.4. Image reconstruction 336</p>
<p>13.5. Example of myocardial SPECT 343</p>
<p>13.6. Conclusion 346</p>
<p>13.7. Bibliography 348</p>
<p>Chapter 14. Positron Emission Tomography 351<br /> Michel DEFRISE and Régine TRÉBOSSEN</p>
<p>14.1. Introduction 351</p>
<p>14.2. Data acquisition 353</p>
<p>14.3. Data processing 363</p>
<p>14.4. Research and clinical applications of PET 370</p>
<p>14.5. Conclusion 373</p>
<p>14.6. Bibliography 374</p>
<p>Chapter 15. Functional Magnetic Resonance Imaging 377<br /> Christoph SEGEBARTH andMichel DÉCORPS</p>
<p>15.1. Introduction 377</p>
<p>15.2. Functional MRI of cerebrovascular responses 378</p>
<p>15.3. fMRI of BOLD contrasts 380</p>
<p>15.4. Different protocols 383</p>
<p>15.5. Bibliography 389</p>
<p>Chapter 16. Tomography of Electrical Cerebral Activity in Magneto– and Electro–encephalography 393<br /> Line Garnero</p>
<p>16.1. Introduction 393</p>
<p>16.2. Principles of MEG and EEG 394</p>
<p>16.3. Imaging of electrical activity of the brain based on MEG and EEG signals 398</p>
<p>16.4. Conclusion 407</p>
<p>16.5. Bibliography 408</p>
<p>List of Authors 411</p>
<p>Index 417</p>