From Microstructure Investigations to Multiscale M odeling – Bridging the Gap

Bridging the Gap

Specificaties
Gebonden, 292 blz. | Engels
John Wiley & Sons | e druk, 2017
ISBN13: 9781786302595
Rubricering
John Wiley & Sons e druk, 2017 9781786302595
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Mechanical behaviors of materials are highly influenced by their architectures and/or microstructures. Hence, progress in material science involves understanding and modeling the link between the microstructure and the material behavior at different scales. This book gathers contributions from eminent researchers in the field of computational and experimental material modeling. It presents advanced experimental techniques to acquire the microstructure features together with dedicated numerical and analytical tools to take into account the randomness of the micro–structure.

 

Specificaties

ISBN13:9781786302595
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:292

Inhoudsopgave

<p>Preface xi</p>
<p>Chapter 1 Synchrotron Imaging and Diffraction for In Situ 3D Characterization of Polycrystalline Materials 1<br />Henry PROUDHON</p>
<p>1.1 Introduction 1</p>
<p>1.2 3D X–ray characterization of structural materials&nbsp; 3</p>
<p>1.2.1 Early days of X–ray computed tomography&nbsp; 3</p>
<p>1.2.2 X–ray absorption and Beer Lambert s law&nbsp; 4</p>
<p>1.2.3 X–ray detection 6</p>
<p>1.2.4 Radon s transform and reconstruction&nbsp; 8</p>
<p>1.2.5 Synchrotron X–ray microtomography&nbsp; 10</p>
<p>1.2.6 Phase contrast tomography&nbsp; 13</p>
<p>1.2.7 Diffraction contrast tomography&nbsp; 14</p>
<p>1.3 Nanox: a miniature mechanical stress rig designed for near–field X–ray diffraction imaging techniques&nbsp; 16</p>
<p>1.4 Coupling diffraction contrast tomography with the finite–element method 19</p>
<p>1.4.1 Motivation for image–based mechanical computations 19</p>
<p>1.4.2 3D mesh generation from tomographic images 20</p>
<p>1.4.3 Toward a fatigue model at the scale of the polycrystal 28</p>
<p>1.5 Conclusion and outlook 29</p>
<p>1.6 Bibliography 31</p>
<p>Chapter 2 Determining the Probability of Occurrence of Rarely Occurring Microstructural Configurations for Titanium Dwell Fatigue&nbsp; 41<br />Adam L PILCHAK, Joseph C TUCKER and Tyler J WEIHING</p>
<p>2.1 Introduction 42</p>
<p>2.2 Experimental methods 44</p>
<p>2.2.1 MTR quantification metrics&nbsp; 44</p>
<p>2.2.2 Synthetic microstructure generation&nbsp; 46</p>
<p>2.2.3 Crystallographic analysis for titanium dwell fatigue 48</p>
<p>2.2.4 Block maxima 50</p>
<p>2.3 Results and discussion 51</p>
<p>2.3.1 Probability of occurrence&nbsp; 53</p>
<p>2.3.2 Hard MTR size distributions&nbsp; 57</p>
<p>2.3.3 Block maxima 58</p>
<p>2.4 Summary and outlook 63</p>
<p>2.5 Bibliography 64</p>
<p>Chapter 3 Wave Propagation Analysis in 2D Nonlinear Periodic Structures Prone to Mechanical Instabilities 67<br />Hilal REDA, Yosra RAHALI, Jean–Fran&ccedil;ois GANGHOFFER and Hassan LAKISS</p>
<p>3.1 Introduction 68</p>
<p>3.2 Extensible energy of pantograph for dynamic analysis&nbsp; 70</p>
<p>3.2.1 Expression of the pantographic network energy&nbsp; 70</p>
<p>3.2.2 Dynamic equilibrium equation&nbsp; 73</p>
<p>3.3 Wave propagation in a nonlinear elastic beam&nbsp; 75</p>
<p>3.3.1 Legendre Hadamard ellipticity condition and loss of stability 77</p>
<p>3.3.2 Supersonic and subsonic modes for 1D wave propagation 78</p>
<p>3.3.3 Wave dispersion relation in 2D nonlinear periodic structures 81</p>
<p>3.3.4 Anisotropic behavior of 2D pantographic networks versus the degree of nonlinearity&nbsp; 84</p>
<p>3.4 Conclusion 85</p>
<p>3.5 Appendix 86</p>
<p>3.6 Bibliography 94</p>
<p>Chapter 4 Multiscale Model of Concrete Failure&nbsp; 99<br />Emir KARAVELI&AElig;, Mijo NIKOLI&AElig; and Adnan IBRAHIMBEGOVI&AElig;</p>
<p>4.1 Introduction 99</p>
<p>4.2 Meso–scale model 102</p>
<p>4.3 Macroscopic model response 106</p>
<p>4.3.1 Uniaxial tests 106</p>
<p>4.3.2 Failure surface 111</p>
<p>4.4 Conclusions 117</p>
<p>4.5 Acknowledgments 119</p>
<p>4.6 Bibliography 120</p>
<p>Chapter 5 Discrete Numerical Simulations of the Strength and Microstructure Evolution During Compaction of Layered Granular Solids&nbsp; 123<br />Bereket YOHANNES, Marcial GONZALEZ and Alberto M CUITI&Ntilde;O</p>
<p>5.1 Introduction 123</p>
<p>5.2 Numerical simulation 127</p>
<p>5.2.1 Discrete particle simulations of powder compaction&nbsp; 127</p>
<p>5.2.2 Discrete particle simulation of layered compacts&nbsp; 129</p>
<p>5.3 Discussion 131</p>
<p>5.4 Conclusion 137</p>
<p>5.5 Acknowledgements 137</p>
<p>5.6 Bibliography 137</p>
<p>Chapter 6 Microstructural Views of Stresses in Three–Phase Granular Materials&nbsp; 143<br />J&eacute;r&ocirc;me DURIEZ, Richard WAN and F&eacute;lix DARVE</p>
<p>6.1 Microstructural expression of triphasic total stresses&nbsp; 145</p>
<p>6.1.1 Stress description within micro–scale volumes and interfaces of triphasic materials&nbsp; 145</p>
<p>6.1.2 Total stress derivation 146</p>
<p>6.2 Numerical modeling of wet ideal granular materials&nbsp; 149</p>
<p>6.2.1 DEM description of fluid microstructure&nbsp; 149</p>
<p>6.2.2 DEM description of stress and strains&nbsp; 152</p>
<p>6.3 Anisotropy of the capillary stress contribution&nbsp; 154</p>
<p>6.3.1 Mechanical loading 155</p>
<p>6.3.2 Hydraulic loading 157</p>
<p>6.4 Effective stress 160</p>
<p>6.5 Conclusion 162</p>
<p>6.6 Bibliography 163</p>
<p>Chapter 7 Effect of the Third Invariant of the Stress Deviator on the Response of Porous Solids with Pressure–Insensitive Matrix&nbsp; 167<br />Jos&eacute; Luis ALVES and Oana CAZACU</p>
<p>7.1 Introduction 168</p>
<p>7.2 Problem statement and method of analysis&nbsp; 171</p>
<p>7.2.1 Drucker yield criterion for isotropic materials&nbsp; 171</p>
<p>7.2.2 Unit cell model 173</p>
<p>7.3 Results 179</p>
<p>7.3.1 Yield surfaces and porosity evolution&nbsp; 179</p>
<p>7.4 Conclusions 190</p>
<p>7.5 Bibliography 194</p>
<p>Chapter 8 High Performance Data–Driven Multiscale Inverse Constitutive Characterization of Composites 197<br />John MICHOPOULOS, Athanasios ILIOPOULOS, John HERMANSON, John STEUBEN and Foteini KOMNINELI</p>
<p>8.1 Introduction 198</p>
<p>8.2 Automated multi–axial testing&nbsp; 202</p>
<p>8.2.1 Loading space 204</p>
<p>8.2.2 Experimental campaign 206</p>
<p>8.3 Constitutive formalisms 207</p>
<p>8.3.1 Small strain formulation 208</p>
<p>8.3.2 Finite strain formulation 209</p>
<p>8.4 Meshless random grid method for experimental evaluation of strain fields 209</p>
<p>8.5 Inverse determination of HDM via design optimization 211</p>
<p>8.5.1 Numerical results of design optimization&nbsp; 214</p>
<p>8.6 Surrogate models for characterization&nbsp; 216</p>
<p>8.6.1 Definition and construction of the surrogate model 218</p>
<p>8.6.2 Characterization by optimization&nbsp; 219</p>
<p>8.6.3 Validation with physical experiments&nbsp; 221</p>
<p>8.7 Multi–scale inversion 221</p>
<p>8.7.1 Forward problem: mathematical homogenization&nbsp; 222</p>
<p>8.7.2 Inverse problem 224</p>
<p>8.8 Computational framework and synthetic experiments&nbsp; 226</p>
<p>8.9 Conclusions and plans 230</p>
<p>8.10 Acknowledgments 232</p>
<p>8.11 Bibliography 232</p>
<p>Chapter 9 New Trends in Computational Mechanics: Model Order Reduction, Manifold Learning and Data–Driven&nbsp; 239<br />Jose Vicente AGUADO, Domenico BORZACCHIELLO, Elena LOPEZ, Emmanuelle ABISSET–CHAVANNE, David GONZALEZ, Elias CUETO and Francisco CHINESTA</p>
<p>9.1 Introduction 240</p>
<p>9.1.1 The big picture 240</p>
<p>9.1.2 The PGD at a glance 242</p>
<p>9.2 Constructing slow manifolds 245</p>
<p>9.2.1 From principal component analysis (PCA) to kernel principal component analysis (kPCA)&nbsp; 245</p>
<p>9.2.2 Kernel principal component analysis (kPCA)&nbsp; 249</p>
<p>9.2.3 Locally linear embedding (LLE)&nbsp; 250</p>
<p>9.2.4 Discussion 251</p>
<p>9.3 Manifold–learning–based computational mechanics&nbsp; 252</p>
<p>9.4 Data–driven simulations 253</p>
<p>9.4.1 Data–based weak form 254</p>
<p>9.4.2 Constructing the constitutive manifold&nbsp; 254</p>
<p>9.5 Data–driven upscaling of viscous flows in porous media 257</p>
<p>9.5.1 Upscaling Newtonian and generalized Newtonian fluids flowing in porous media&nbsp; 258</p>
<p>9.6 Conclusions 260</p>
<p>9.7 Bibliography 261</p>
<p>List of Authors 267</p>
<p>Index 271</p>

Rubrieken

    Personen

      Trefwoorden

        From Microstructure Investigations to Multiscale M odeling – Bridging the Gap