Power Systems–On–Chip: Practical Aspects of Design

Practical Aspects of Design

Specificaties
Gebonden, 352 blz. | Engels
John Wiley & Sons | e druk, 2016
ISBN13: 9781786300812
Rubricering
John Wiley & Sons e druk, 2016 9781786300812
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

The book gathers the major issues involved in the practical design of Power Management solutions in wireless products as Internet–of–things. Presentation is not about state–of–the–art but about appropriation of validated recent technologies by practicing engineers. The book delivers insights on major trade–offs and a presentation of examples as a cookbook. The content is segmented in chapters to make access easier for the lay–person.

Specificaties

ISBN13:9781786300812
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:352

Inhoudsopgave

<p>Preface xi</p>
<p>Introduction&nbsp; xv<br />Bruno ALLARD</p>
<p>Chapter 1. Control Strategies and CAD Approach 1<br />Pedro ALOU, Jos&eacute; A. COBOS, Jesus A. OLIVER, Bruno ALLARD, Ben&ocirc;it LABBE, Aleksandar PRODIC and Aleksandar RADIC</p>
<p>1.1. Objectives 2</p>
<p>1.2. Operation principle of three non–isolated converters&nbsp; 8</p>
<p>1.2.1. Buck converter operation 8</p>
<p>1.2.2. Boost converter operation 10</p>
<p>1.2.3. Buck–boost converter operation 11</p>
<p>1.3. Power stage 13</p>
<p>1.3.1. MOSFET switching an inductive load&nbsp; 13</p>
<p>1.3.2. Extracting the parasitic capacitance values using simulations&nbsp; 18</p>
<p>1.3.3. Power–stage design issues 19</p>
<p>1.3.4. Segmented power stage and multiphase operation 21</p>
<p>1.3.5. LC filter design space 22</p>
<p>1.4. Control stage&nbsp; 29</p>
<p>1.4.1. Voltage–mode control of the buck converter&nbsp; 29</p>
<p>1.4.2. The RHP zero of the boost converter&nbsp; 35</p>
<p>1.4.3. Current–mode control 37</p>
<p>1.4.4. Hysteretic and sliding–mode control 40</p>
<p>1.4.5. Ripple–based controls for fast dynamics 45</p>
<p>1.4.6. V1 concept: description and applicability&nbsp; 52</p>
<p>1.4.7. Overview of the synchronization of asynchronous modulations&nbsp; 59</p>
<p>1.4.8. PFM – pulse skipping: burst modes 62</p>
<p>1.5. Minimum voltage deviation controller&nbsp; 63</p>
<p>1.5.1. Introduction&nbsp; 64</p>
<p>1.5.2. Integrated circuit implementation and experimental results 67</p>
<p>1.6. CAD tools for PwrSoC design and optimization&nbsp; 69</p>
<p>1.6.1. Overview of the CAD requirements 71</p>
<p>1.6.2. Loss models for integrated inductors and semiconductors&nbsp; 73</p>
<p>1.6.3. Optimization algorithms 82</p>
<p>1.6.4. Outcome of the optimization (topology, area, loss, fsw, detailed design) 84</p>
<p>1.6.5. Impact of technology 87</p>
<p>1.7. Conclusion 91</p>
<p>Chapter 2. Magnetic Components for Increased Power Density 93<br />Santosh KULKARNI and Cian O MATHUNA</p>
<p>2.1. Commercial and research trends towards PwrSiP and PwrSoC&nbsp; 96</p>
<p>2.2. Review of magnetics 104</p>
<p>2.2.1. Micro–inductor structures 104</p>
<p>2.2.2. Magnetic materials and processing for thin film integrated micro–magnetic devices 111</p>
<p>2.3. Figures of merit for performance of integrated magnetics&nbsp; 118</p>
<p>2.3.1. Figure of merit DC performance&nbsp; 118</p>
<p>2.3.2. Figure of merit and AC performance&nbsp; 123</p>
<p>2.4. Technology roadmap and challenges 123</p>
<p>2.4.1. Market drivers 124</p>
<p>2.4.2. PwrSoC supply chain challenges 126</p>
<p>2.4.3. PwrSoC technology platform 127</p>
<p>2.4.4. Integrated magnetic devices for PwrSoC opportunities 128</p>
<p>2.5. Conclusions&nbsp; 130</p>
<p>2.6. Acknowledgments 132</p>
<p>Chapter 3. Dielectric Components for Increased Power Density 133<br />Fr&eacute;d&eacute;ric VOIRON</p>
<p>3.1. Introduction&nbsp; 133</p>
<p>3.2. Basics of dielectric physics&nbsp; 135</p>
<p>3.2.1. Forewords 135</p>
<p>3.2.2. Polarization, dipole and capacitance 135</p>
<p>3.2.3. Polarization mechanisms in dielectrics 136</p>
<p>3.2.4. Losses in dielectrics&nbsp; 139</p>
<p>3.3. Silicon integrated capacitors 140</p>
<p>3.3.1. Integrated capacitors for enhanced performance&nbsp; 141</p>
<p>3.4. Integrated capacitors for enhanced reliability&nbsp; 145</p>
<p>3.4.1. Dielectric processing 145</p>
<p>3.4.2. Lifetime considerations&nbsp; 149</p>
<p>3.5. Integrated capacitor optimization for power switching 150</p>
<p>3.5.1. Regular layout 150</p>
<p>3.5.2. Broad band modeling 150</p>
<p>3.5.3. Capacitance parasitic suppression&nbsp; 153</p>
<p>3.6. Conclusion 154</p>
<p>Chapter 4. On–board Power Management DC/DC Inductive Converter&nbsp; 157<br />Beno&icirc;t LABBE and Bruno ALLARD</p>
<p>4.1. Specifications 157</p>
<p>4.1.1. Load–related requirements&nbsp; 158</p>
<p>4.1.2. System–related requirements 159</p>
<p>4.1.3. Power delivery network&nbsp; 161</p>
<p>4.2. Current–mode sliding–mode control implementation&nbsp; 161</p>
<p>4.2.1. System analysis: voltage regulation loops&nbsp; 162</p>
<p>4.2.2. System analysis: loop delay control 167</p>
<p>4.2.3. System analysis: switching frequency control 168</p>
<p>4.2.4. Design 169</p>
<p>4.2.5. Results 172</p>
<p>4.3. Conclusions . 174</p>
<p>Chapter 5. On–Chip Power Management DC/DC Switched–Capacitor Converter&nbsp; 179<br />Gael PILLONNET, Thomas SOUVIGNET and Bruno ALLARD</p>
<p>5.1. Topology description 180</p>
<p>5.1.1. Ratio calculation&nbsp; 180</p>
<p>5.1.2. Basic scheme&nbsp; 182</p>
<p>5.1.3. Steady–state modeling 183</p>
<p>5.2. Pros and cons&nbsp; 190</p>
<p>5.2.1. Key advantages&nbsp; 190</p>
<p>5.2.2. Main disadvantages&nbsp; 192</p>
<p>5.3. State–of–the–art 193</p>
<p>5.3.1. Research scope and main focus 194</p>
<p>5.3.2. Integration level&nbsp; 194</p>
<p>5.3.3. The point–of–load (POL) application&nbsp; 195</p>
<p>5.4. Design example&nbsp; 204</p>
<p>5.4.1. Landscape of demonstrated solutions&nbsp; 204</p>
<p>5.4.2. Selected architecture 207</p>
<p>Chapter 6. High–Switching Frequency Inductive DC/DC Converters&nbsp; 213<br />Christian MARTIN, Florian NEVEU and Bruno ALLARD</p>
<p>6.1. Context and topologies&nbsp; 214</p>
<p>6.1.1. Discussion on figures of merit&nbsp; 219</p>
<p>6.1.2. Outstanding state–of–the–art performances 224</p>
<p>6.2. Cascode power stage 225</p>
<p>6.3. High–quality decoupling 229</p>
<p>6.4. Design considerations for passive components 232</p>
<p>6.5. Integrated inductor characterization 235</p>
<p>6.5.1. Harmonic characterization&nbsp; 235</p>
<p>6.5.2. Time–domain characterization&nbsp; 237</p>
<p>6.5.3. Converter experimental characterization&nbsp; 242</p>
<p>6.6. Conclusion 246</p>
<p>6.7. Acknowledgments 247</p>
<p>Chapter 7. Hybrid and Multi–level Converter Topologies for On–Chip Implementation of Reduced Voltage–Swing Converters 249<br />Aleksandar PRODIC, Sheikh Mohammad AHSANUZZAMAN, Behzad MAHDAVIKHAH and Timothy MCRAE</p>
<p>7.1. Introduction&nbsp; 249</p>
<p>7.1.1. Inductor volume reduction through voltage swing minimization&nbsp; 251</p>
<p>7.2. Cascaded hybrid SC–inductive topologies&nbsp; 254</p>
<p>7.2.1. Merged switched–capacitor multi–phase buck (MSCB) converter&nbsp; 255</p>
<p>7.3. Hybrid serial input/output converters&nbsp; 262</p>
<p>7.3.1. HSI/O power processing efficiency and power division 265</p>
<p>7.3.2. Switched–capacitor conversion ratio 267</p>
<p>7.3.3. Passive volume and switch voltage stress&nbsp; 269</p>
<p>7.4. An on–chip integrated high–density power management solution for portable applications based on a multi–output switched–capacitor circuit 270</p>
<p>7.5. Multi–level and flying capacitor multi–level converters&nbsp; 279</p>
<p>7.6. Conclusion 282</p>
<p>Bibliography 285</p>
<p>List of Acronyms&nbsp; 311</p>
<p>List of Authors&nbsp; 315</p>
<p>Index&nbsp; 317</p>

Rubrieken

    Personen

      Trefwoorden

        Power Systems–On–Chip: Practical Aspects of Design