<ul> <li>List of contributors</li> <li>Series introduction</li> <li>Volumes in the EFC series</li> <li>Preface</li> <li>Part One: Turbomachinery Development<ul> <li>1: Understanding corrosion: basic principles<ul> <li>1.1 Introduction</li> <li>1.2 Materials and surfaces</li> <li>1.3 Basic corrosion processes</li> <li>1.4 Main forms of corrosion degradation</li> <li>1.5 Conclusion</li></ul></li> <li>2: Biofilms and biocorrosion<ul> <li>2.1 Introduction</li> <li>2.2 Biofilms</li> <li>2.3 Corrosion and biocorrosion</li> <li>2.4 Molecular techniques for the investigation of biofilm communities</li> <li>2.5 DNA microarrays</li> <li>2.6 Mass spectrometric metabolomics for the study of biofilm-influenced corrosion</li> <li>2.7 Conclusions</li> <li>Acknowledgements</li></ul></li> <li>3: Molecular methods for studying biocorrosion<ul> <li>3.1 Introduction</li> <li>3.2 Requirements for molecular biological studies</li> <li>3.3 Molecular methods based on the analysis of the 16S- and 18S-rRNA gene sequences</li> <li>3.4 Functional genes as a molecular tool</li> <li>3.5 Other useful methods</li></ul></li> <li>4: Sulphate-reducing bacteria (SRB) and biocorrosion<ul> <li>4.1 Introduction</li> <li>4.2 Microbially induced corrosion (MIC)</li> <li>4.3 Sulphate-reducing bacteria (SRB): bringing together hydrogen, sulphur and nitrogen biocycles</li> <li>4.4 Electron transfer (ET) processes relevant for SRB</li> <li>4.5 Bacteria and metal surfaces: influence of extracellular polymeric substances (EPSs)</li> <li>4.6 Useful methods and tools for MIC assessment</li> <li>4.7 Conclusions</li> <li>Acknowledgements</li></ul></li> <li>5: Electroactive biofilms<ul> <li>5.1 Introduction</li> <li>5.2 Different types of electron transfer mechanisms</li> <li>5.3 Examples of electroactive biofilms (EABs) from the lab</li> <li>5.4 EABs and technological applications</li> <li>5.5 EABs and biocorrosion</li> <li>5.6 Conclusions</li></ul></li> <li>6: Immobilization and trapping of living bacteria and applications in corrosion studies<ul> <li>6.1 Introduction</li> <li>6.2 Materials and methods</li> <li>6.3 Immunoimmobilization, trapping bacteria and applications</li> <li>6.4 BiyoTrap and applications</li> <li>6.5 Conclusions</li> <li>Acknowledgements</li></ul></li></ul></li> <li>Part Two: Evaluating and modelling biocorrosion<ul> <li>7: Physical and local electrochemical techniques for measuring corrosion rates of metals<ul> <li>7.1 Introduction</li> <li>7.2 Global measurement of corrosion rate</li> <li>7.3 Electrochemical techniques for monitoring generalized corrosion</li> <li>7.4 Electrochemical techniques for monitoring localized corrosion</li> <li>7.5 Conclusions</li></ul></li> <li>8: Surface analysis techniques for investigating biocorrosion<ul> <li>8.1 Introduction</li> <li>8.2 X-ray photoelectron spectroscopy (XPS) analysis</li> <li>8.3 Time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis</li> <li>8.4 Combining different analysis techniques</li> <li>8.5 Conclusions</li></ul></li> <li>9: Modelling long term corrosion of steel infrastructure in natural marine environments<ul> <li>9.1 Introduction</li> <li>9.2 Models and modelling</li> <li>9.3 Models for corrosion</li> <li>9.4 Factors involved in marine corrosion</li> <li>9.5 Microbiologically influenced corrosion (MIC)</li> <li>9.6 Corrosion loss model</li> <li>9.7 Effects of nutrient pollution</li> <li>9.8 Accelerated low water corrosion (ALWC)</li> <li>9.9 Evaluating the effect of nutrient pollution</li> <li>9.10 Conclusions</li> <li>Acknowledgements</li></ul></li> <li>10: Modeling mechanisms in biocorrosion<ul> <li>10.1 Introduction</li> <li>10.2 Corrosion diagrams</li> <li>10.3 Interfacial changes due to microbially influenced corrosion (MIC)</li> <li>10.4 Localized corrosion</li> <li>10.5 Modeling</li> <li>10.6 Conclusions and recommendations</li></ul></li></ul></li> <li>Part Three: Case studies<ul> <li>11: Biodeterioration of concrete, brick and other mineral-based building materials<ul> <li>11.1 Introduction</li> <li>11.2 Biodeterioration of natural and man-made building materials</li> <li>11.3 Microorganisms that cause the biodeterioration of mineral-based materials</li> <li>11.4 Factors contributing to the biodeterioration of mineral-based materials</li> <li>11.5 Symptoms of mineral-based material biodeterioration</li> <li>11.6 The case of concrete biodeterioration</li> <li>11.7 The case of bricks and mortar biodeterioration</li> <li>11.8 Conclusions</li></ul></li> <li>12: Biocorrosion issues associated with the use of ultra-low sulfur diesel and biofuel blends in the energy infrastructure<ul> <li>12.1 Introduction</li> <li>12.2 The need for cleaner diesel fuel</li> <li>12.3 The impact of organosulfur compounds on anaerobic metabolism</li> <li>12.4 The impact of desulfurization on diesel fuel stability</li> <li>12.5 Assessment of diesel additives: fatty acid methyl esters (FAME)</li> <li>12.6 Fuel composition and inocula are equally important</li> <li>12.7 Conclusions</li></ul></li> <li>13: Understanding marine biocorrosion: experiments with artificial and natural seawater<ul> <li>13.1 Introduction</li> <li>13.2 Effect of nutrients and oxygen removal on biocorrosion</li> <li>13.3 Comparison of experiments in natural and artificial seawater</li> <li>13.4 Variability in the composition of natural seawater</li> <li>13.5 Conclusions</li> <li>Acknowledgements</li></ul></li> <li>14: Managing open recirculating cooling water systems to minimize contamination and corrosion<ul> <li>14.1 Introduction</li> <li>14.2 Description of the scope of the work</li> <li>14.3 Conclusions</li> <li>14.4 Sources of further information and advice</li> <li>Acknowledgements</li> <li>Appendix 1 Scope of the work document for open recirculating cooling water systems, 1/31/2013, Company X, Plant X, supplier service requirements</li> <li>Appendix 2 Guidelines for best practices for the control of Legionella, July 2008</li></ul></li> <li>15: Risk assessment of biocorrosion in condensers, pipework and other cooling system components<ul> <li>15.1 Introduction</li> <li>15.2 Biofouling/biocorrosion</li> <li>15.3 Biocorrosion risk mitigation</li> <li>15.4 Monitoring systems</li> <li>15.5 Conclusions</li></ul></li> <li>16: The effect of H<sub>2</sub>S on the corrosion of steels<ul> <li>16.1 Introduction</li> <li>16.2 Carbon steel and low alloy steels in H<sub>2</sub>S containing solutions</li> <li>16.3 Stainless steels: microstructures and corrosion</li> <li>16.4 Conclusion</li></ul></li></ul></li> <li>Index</li></ul>