<p>An Introduction to P-type ATPase research.- Purification of Na,K-ATPase from Pig Kidney.- Preparation of Ca<sup>2+</sup>-ATPase1a Enzyme from Rabbit Sarcoplasmic Reticulum.- Isolation of H<sup>+</sup>/K<sup>+</sup>-ATPase-enriched Membrane Fraction from Pig Stomachs.- Overproduction of PiB-type ATPases.- Coordinated Overexpression in Yeast of a P4-ATPase and its Associated Cdc50 Subunit: The Case of the Drs2p/Cdc50p Lipid Flippase Complex.- The Plasma Membrane Ca<sup>2+</sup>-ATPase: Purification by Calmodulin Affinity Chromatography, and Reconstitution of the Purified Protein.- Expression of Na,K-ATPase and H,K-ATPase Isoforms With The Baculovirus Expression System.- Time-dependent Protein Thermostability Assay.- Colorimetric Assays of Na,K-ATPase.- ATPase Activity Measurements by an Enzyme-Coupled Spectrophotometric Assay.- Antimony-Phosphomolybdate ATPase Assay.- ATPase Activity Measurements using radiolabeled ATP.- Assaying P-type ATPases Reconstituted in Liposomes.- Coupling ratio for Ca<sup>2+</sup> Transport by Calcium Oxalate Precipitation.- Calcium Uptake in Crude Tissue Preparation.- Measuring H<sup>+</sup> Pumping and Membrane Potential Formation in Sealed Membrane Vesicle Systems.- Assay of Flippase Activity in Proteoliposomes using Fluorescent Lipid Derivatives.- The use of Metal Fluoride Compounds as Phosphate Analogs for Understanding the Structural Mechanism in P-type ATPases.- Phosphorylation/Dephosphorylation Assays.- Tryptophan Fluorescence Changes Related to Ca<sup>2+</sup>-ATPase Function.- Determination of the ATP Affinity of the Sarcoplasmic Reticulum Ca<sup>2+</sup>-ATPase by Competitive Inhibition of [g-32P]TNP-8N3-ATP Photolabeling.</p><p></p><p></p><p>23. Ca<sup>2+</sup> Binding and Transport Studied with Ca<sup>2+</sup>/EGTA Buffers and <sup>45</sup>Ca<sup>2+</sup></p><p></p><p>24. Assay of Copper Transfer and Binding to P<sub>1B</sub>-ATPases</p><p></p><p> </p><p></p><p>25. Voltage Clamp Fluorometry of P-Type ATPases</p><p></p><p>26. Electrophysiological Measurements on Solid Supported Membranes </p><p></p><p>27. Electrophysiological Characterization of Na,K-ATPases Expressed in Xenopus laevis Oocytes Using Two-Electrode Voltage Clamping</p><p> </p><p> </p><p></p>28. Functional Studies of Na<sup>+</sup>,K<sup>+</sup>-ATPase using Transfected Cell Cultures<p></p><p></p><p>29. HPLC Neurotransmitter Analysis</p><p> </p><p>30. Behavior Test Relevant to a<sub>2</sub>/a<sub>3</sub>Na<sup>+</sup>/K<sup>+</sup>-ATPase Gene Modified Mouse Models</p><p> </p><p>31. Zebrafish Whole-mount in situ Hybridization Followed by Sectioning</p><p> </p><p>32. Whole-mount Immunohistochemistry for Anti-F59 in Zebrafish Embryos (1-5 days Post Fertilization (dpf)) Canan Doganli</p><p></p><p>33. Cell-based Lipid Flippase Assay Employing Fluorescent Lipid Derivatives</p><p> </p>34. Transient Expression of P-type ATPases in Tobacco Epidermal Cells<p></p><p></p><p> </p><p></p><p>35. Lipid Exchange by Ultracentrifugation</p><p></p><p>36. Reconstitution of Na<sup>+</sup>, K<sup>+</sup>-ATPase in Nanodiscs</p><p></p><p></p>37. Crystallization of P-type ATPases by the High Lipid-detergent (HiLiDe) Method<p></p><p></p><p>38. Two-dimensional Crystallization of the Ca<sup>2+</sup>-ATPase for Electron Crystallography</p><p>39. Two-dimensional Crystallization of Gastric H+,K+-ATPase for Structural Analysis By Electron Crystallography</p><p></p><p></p><p>40. MD Simulations of P-type ATPases in a Lipid Bilayer System</p><p>41. Computational Classification of P-Type ATPases</p><p> </p><p>42. Molecular Modeling of Fluorescent SERCA Biosensors</p><p> </p><p>43. How to Compare, Analyze and Morph Between Crystal Structures of Different Conformations: The P-type ATPase Example</p><p>Jesper L</p><p> </p><p> </p><p> </p><p> </p><p></p>