Translational Regulation of Gene Expression

Specificaties
Paperback, 510 blz. | Engels
Springer US | 0e druk, 2012
ISBN13: 9781468453676
Rubricering
Springer US 0e druk, 2012 9781468453676
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Given the accelerated growth of knowledge in the field of gene expression, it seemed timely to discuss current developments in the area of translational reg­ ulation of gene expression as well as to evaluate emerging technology. Translational regulation occurs with prokaryotic as well as with eukaryotic messenger RNA (mRNA) in vivo and in vitro. In prokaryotes, through genetic manipulations and mutagenesis, the mechanisms are much better understood, as for example the mechanism of attenuation. In bacteria, different translational efficiencies for the same mRNA may vary by lOOO-fold. Translational regulation was first observed in 1966 with RNA phages of Escherichia coli by Lodish and Zinder. However, translational regulation of proteins from DNA genomes is also well described for bacteria, as for example gene 32 protein of bacteriophage T4 and E. coli ribosomal proteins. In eukaryotes, the utilization of an individual mRNA species with different efficiencies is poorly understood. For example, mRNA for ribosomal proteins is translationally regulated during Drosophila oogenesis, without any clue to the mechanism involved. It was observed that ribosomal protein mRNA during Drosophila oogenesis and embryogenesis is selectively on or off the polysomes during different developmental stages. In contrast, bacterial ribosomal protein is also translationally regulated by autogenous regulation. The mechanism is well understood and involves binding of the gene product to its transcript in competition with rRNA.

Specificaties

ISBN13:9781468453676
Taal:Engels
Bindwijze:paperback
Aantal pagina's:510
Uitgever:Springer US
Druk:0

Inhoudsopgave

1 Translational Regulation of Ribosomal Proteins in Escherichia coli: Molecular Mechanisms.- 1. Evidence for Autoregulation of Ribosomal Proteins.- 2. Regulation of the ? Operon by S4.- 2.1. Introduction.- 2.2. Thermodynamics of S4-Messenger RNA Complex Formation.- 2.3. Structure of the ? Messenger RNA Leader.- 3. Regulation of the L11 Operon by L1.- 4. Regulation of the rif Operon by L10.- 5. Other Ribosomal-Protein Repressors.- 6. Common Themes in Ribosomal-Protein Autoregulation.- 7. Thermodynamics of Translational Repression.- 7.1. Thermodynamics of Translation.- 7.2. Translation and Repression In Vivo.- 8. Predictions of Different Translational Repression Models.- 8.1. Displacement Model.- 8.2. Entrapment Model.- 8.3. Influences of Protein Binding on Messenger RNA Turnover...- 8.4. Prediction of Gene-Dosage Effects.- 9. Influence of Messenger RNA Secondary Structure on Translation...- 10. Future Directions.- References.- 2 Translational Regulation in Bacteriophages.- 1. Introduction.- 2. RNA Phage.- 2.1. Repression by Replicase.- 2.2. Repression by Coat Protein.- 3. T4 Gene 32.- 3.1. Autogenous Translational Repression.- 3.2. Binding Parameters.- 3.3. Quantitative Model of Repression.- 3.4. Tests of the Model.- 4. f1 Gene V.- 5. P22 Gene 8.- 6. T4 RegA Protein.- 7. Structural Repression and Activation.- 8. Conclusions.- References.- 3 Escherichia coli Threonyl-Transfer RNA Synthetase as a Model System to Study Translational Autoregulation in Prokaryotes.- 1. Introduction.- 2. Structure of the Escherichia coli Genome around the Gene for Threonyl-Transfer RNA Synthetase.- 3. The Expression of the Gene for Threonyl-Transfer RNA Synthetase Is Negatively Autoregulated at the Translational Level.- 3.1. In Vitro Studies.- 3.2. In Vivo Studies.- 4. Genetic Definition of the Translational Operator.- 4.1. Isolation of Operator Constitutive Mutants.- 4.2. Nucleotide Sequence of the Operator Constitutive Mutants.- 4.3. Homologies between the thrS Translational Operator and the Threonine-Specific Transfer RNAs.- References.- 4 Translational Regulation of Ribosomal Protein Gene Expression in Eukaryotes.- 1. Introduction.- 2. Translational Regulation of Yeast Ribosomal Protein Synthesis.- 2.1. Genetics of Yeast Ribosomal Proteins.- 2.2. Is There Life after Transcription?.- 2.3. Evidence for Translational Regulation of Yeast Ribosomal Protein Synthesis.- 2.4. Other Aspects of Ribosomal Protein Messenger RNA Translation.- 2.5. Future Directions.- 3. Translational Regulation of Ribosomal Protein Synthesis during Drosophila Development.- 4. Translational Regulation of Ribosomal Protein Synthesis during Xenopus Development.- 5. Translational Regulation of Ribosomal Protein Synthesis during Mammalian Development.- 6. Translational Regulation of Ribosomal Protein Synthesis in Other Eukaryotic Cells.- 7. Conclusions and Prospects.- References.- 5 Selective Messenger RNA Translation in Marine Invertebrate Oocytes, Eggs, and Zygotes.- 1. Introduction.- 2. Translational Control in Sea Urchin Eggs and Embryos.- 2.1. Role of Changes in the Translational Machinery.- 2.2. Role of Changes in the Availability of Messenger RNA.- 3. Quantitative Changes in Other Organisms.- 3.1. Qualitative Changes in Protein Synthesis.- 3.2. Mechanisms of Selective Translation.- 3.3. Regulation of Message Availability through the Association of the Maternal Messenger RNA with Other Macromolecules.- 3.4. Changes in Messenger RNA Structure Related to Changes in the Translation of Different Messenger RNAs.- 3.5. Role of Messenger RNA Competition in Changing Relative Rates of Messenger RNA Utilization.- 3.6. Role of Messenger RNA Localization in Selective Translation 104 4. Conclusions.- References.- 6 Molecular Mechanisms of Translational Control during the Early Development of Xenopus laevis.- 1. Introduction.- 2. Oogenesis and Embryogenesis in Xenopus laevis.- 2.1. RNA and Protein Synthesis during Oogenesis.- 2.2. Messenger RNA Recruitment during Oocyte Maturation.- 2.3. Messenger RNA Recruitment during Embryogenesis.- 3. Compartmentalization of Messenger RNAs.- 3.1. Localized Messenger RN As.- 3.2. Membrane-Bound Messenger RNAs.- 4. Special Features of Translational Control.- 4.1. Translational Capacity of Oocytes.- 4.2. RNA Binding Proteins.- 4.3. Interspersed RNAs.- 4.4. Heat-Shock Response.- 4.5 Role of Polyadenylation.- 5. Conclusions.- References.- 7 Storage and Translation of Ferritin Messenger RNA.- 1. Introduction.- 2. Ferritin Structure.- 2.1. Protein Shell.- 2.2. Iron Core and Iron-Protein Interactions.- 3. Storage of Ferritin Messenger RNA.- 3.1. Ferritin Messenger RNA Encoding a Luxury Protein.- 3.2. Ferritin Messenger RNA Encoding a Housekeeping Protein.- 3.3. Significance of Ferritin Messenger RNA Storage.- 4. Translational Efficiency of Ferritin Messenger RNA.- 4.1. Translational Competition in Whole Cells.- 4.2. Translational Competition in Cell-Free Systems.- 4.3. Ferritin Messenger RNA Structure.- 5. Ferritin Gene Organization.- 6. Summary and Conclusions.- References.- 8 Regulation of Messenger RNA Translation at the Elongation Step during Estradiol-Induced Vitellogenin Synthesis in Avian Liver.- 1. Introduction.- 2. Analysis of Polypeptide Chain Elongation in Eukaryotic Systems.- 2.1. Examples of Gene Regulation at the Level of Polypeptide Chain Elongation.- 2.2. Methods of Analyzing Rates of Polypeptide Chain Elongation.- 2.3. Polypeptide Chain Elongation in Cockerel Liver following 17?- Estradiol Stimulation: Analysis of the Average Rate and of Specific Rates for Serum Albumin and Vitellogenin Peptides.- 3. Mechanisms of Regulation at the Elongation Step of Protein Synthesis.- 4. Concluding Remarks.- References.- 9 Translational Regulation in the Heat-Shock Response of Drosophila Cells.- 1. Introduction.- 2. Background.- 2.1. Heat-Shock Proteins..- 2.2. General Features of the Drosophila Response.- 3. Translational Specificity during Heat Shock.- 3.1. General Description of the Change in Translational Specificity.- 3.2. Models of Regulation.- 3.3. Heat-Shock Message-Translation Element.- 3.4. What Cellular Component Discriminates among Messages?.- 4. Translational Regulation during Recovery.- 4.1 Characterization of the Recovery Process.- 4.2. Possible Mechanisms of Recovery.- 5. Conclusions.- References.- 10 Strategies of Fibroin Production.- 1. Introduction.- 2. Fibroin-Synthesizing Systems.- 2.1. Bombyx mori.- 2.2. Spiders.- 3. Nephila clavipes Model System.- 3.1. Large Ampullate Glands.- 3.2. Cell-Free Translation.- 3.3. Discontinuous Translation.- 3.4. Transfer RNA Functional Adaptation.- 4. Alanine Transfer RNA Isoacceptors.- 5. Alanine Transfer RNA Genes in Bombyx mori.- 6. Relevance to the Nephila System.- References.- 11 Translational Regulation during Photomorphogenesis.- 1. Overview.- 2. Translational Regulation Accompanying Chloroplast Biogenesis.- 3. Translational Regulation Accompanying Cytodifferentiation in Volvox.- 4. Future Studies.- References.- 12 Gene Expression in Muscle: The Role of Small RNAs in the Expression of Muscle-Specific Proteins.- 1. Introduction.- 2. Interaction of Translational Control RNA102 with Messenger RNAs.- 2.1. Interaction In Vivo.- 2.2. Interaction In Vitro.- 2.3. Sequence Homology between Myosin Heavy-Chain Messenger RNA and Translational Control RNA102.- 3. Identification of a Translational Control RNA102 Gene.- 4. Subspecies of Translational Control RNA102.- 5. Conclusion and Prospects.- References.- 13 Involvement of Nucleotides in Protein Synthesis Initiation.- 1. Introduction.- 2. Requirement for GTP: Eukaryotic Initiation Factor 2.- 3. Other GTP Binding Proteins: Eukaryotic Initiation Factor 5.- 4. GTP Binding Domain.- 5. Requirement for ATP: Messenger RNA Binding.- 5.1. Eukaryotic Initiation Factor 4A.- 5.2. Eukaryotic Initiation Factor 4F.- 6. Interaction of the Messenger RNA Specific Factors.- 7. Mechanism of Binding Messenger RNA.- 8. Control of Protein Synthesis by Nucleotide Binding Proteins.- References.- 14 Roles of Eukaryotic Initiation Factor 2 and Eukaryotic Initiation Factor 2 Ancillary Protein Factors in Eukaryotic Protein Synthesis Initiation.- 1. Introduction.- 2. Roles of Eukaryotic Initiation Factor 2 and Eukaryotic Initiation Factor 2 Ancillary Protein Factors in Regulation of Protein Synthesis Initiation.- 2.1. Animal Cells.- 2.2. Lower Eukaryotic Cells.- 3. Concluding Remarks.- References.- 15 Role of Eukaryotic Messenger RNA Cap-Binding Protein in Regulation of Translation.- 1. Introduction.- 2. Cap-Binding Proteins Involved in Translation Initiation.- 2.1. Early Studies.- 2.2. ATP-Dependent Cap-Binding Proteins.- 2.3. Inactivation of Cap-Binding Protein Function after Poliovirus Infection and the Discovery of a New Initiation Factor.- 2.4. Structural Analysis of Cap-Binding Proteins and Their Subcellular Distribution.- 3. Messenger RNA Secondary Structure and Cap Recognition.- 3.1. Introduction.- 3.2. ATP and Cap Recognition.- 3.3. Ionic Strength and Cap Function.- 3.4. Poliovirus Infection and Cap-Binding Protein Activity.- 4. Discriminatory Activity of the Cap-Binding Protein Complex.- 5. Role of Cap-Binding Proteins in Regulation of Gene Expression.- 5.1. Poliovirus Infection of HeLa Cells.- 5.2. Heat Shock.- 5.3. Involvement of the Cap Structure in Control of Gene Expression in Other Systems.- 6. Concluding Remarks.- References.- 16 Differential Translation of Eukaryotic Messenger RNAs: The Role of Messenger RNA Secondary Structure.- 1. Introduction.- 2. Examples of Translational Regulation Mediated through Differential Messenger RNA Translational Efficiencies.- 3. Experimental Analysis of Messenger RNA Secondary Structure.- 4. Analysis of the Cleavage Patterns.- 5. Conclusion.- References.- 17 Translational and Nontranslational Mechanisms of Regulation by Eukaryotic Suppressor Mutants.- 1. Introduction.- 2. Suppressor Mechanisms.- 3. Transcriptional Regulation.- 4. Translational Regulation.- 5. Posttranslational Regulation.- 5.1. Vermilion Mutant.- 5.2. Suppression of Vermilion and Tryptophan Oxygenase.- 5.3. Purple Mutant.- 5.4. Suppression of Purple and 6-Pyruvoyltetrahydropterin Synthase.- 5.5. Suppression of Speck and Phenol Oxidase.- 6. Summary..- References.- 18 Translational Control of a Transcriptional Activator in the Regulation of Amino Acid Biosynthesis in Yeast.- 1. Introduction.- 2. General Amino Acid Control.- 3. cis-Acting Transcriptional Signals in General Amino Acid Control.- 4. A Hierarchy of trans-Acting Regulatory Factors in the General Amino Acid Control.- 5. Translational Control of GCN4 Expression.- 6. Translational Control of GCN4 Is Mediated by Multiple Upstream AUG Codons in GCN4 Messenger RNA.- 7. Functional Differentiation of the Upstream AUG Codons in GCN4 Messenger RNA.- 8. Translational Control of GCN4 and the Scanning Hypothesis.- References.- 19 The Role of Messenger RNA Sequences and Structures in Eukaryotic Translation.- 1. Introduction.- 2. An AUG Codon Is Required for Efficient Initiation of Translation.- 3. Effects of AUG Context on Translation.- 4. Sequences Adjacent to the AUG Initiation Codon and Effects of the Length of the Leader Region.- 5. Effects of Messenger RNA Secondary Structures and Sequences That Diminish Translation.- 6. Initiation Codon Selection.- 7. Eukaryotic Ribosomes Can Terminate and Then Reinitiate Translation.- 8. Polycistronic Messenger RNA in Eukaryotes.- 9. Translational Control and AUG Selection.- 10. Concluding Remarks.- References.- 20 Translational Regulation by Adenovirus Virus-Associated I RNA.- 1. Adenovirus Group.- 2. Organization of the Adenovirus Genome.- 3. Adenovirus Virus-Associated RNAs.- 4. Translational Alterations in Adenovirus-Infected Cells.- 5. Virus-Associated I RNA Is Required for Translation in Late Adenovirus-Infected Cells.- 6. Virus-Associated I RNA Is Required for Translation Initiation in Late Adenovirus-Infected Cells.- 7. Function of Virus-Associated I RNA.- 7.1. Regulation of Translation—An Overview.- 7.2. Eukaryotic Initiation Factor 2 Is Inactive in dl331 (VAI —)- Infected Cells.- 7.3. Interferon-Induced Pl/eIF-2 ?-Kinase Is Active in dl331- Infected Cells.- 7.4. Virus-Associated I RNA Prevents Activation of the Pl/eIF-2 ? -Kinase.- 7.5. Structural Requirements for Virus-Associated I RNA Function.- 8. Mechanism of Virus-Associated I RNA Activity.- 9. Other Viral Translation Regulation Mechanisms.- References.- 21 Translational Control of Transcription Termination in Prokaryotes.- 1. Introduction.- 2. Transcription Termination and RNA Polymerase Pausing.- 2.1. Rho-Independent Transcription Termination.- 2.2. Rho-Dependent Transcription Termination.- 3. Translational Control of Transcription Termination: Attenuation.- 3.1. General Features of Attenuator Control of Amino Acid Biosynthetic Opérons.- 3.2. Attenuation Control of the ilvGMEDA Operon of the Isoleucine-Valine Regulon of Escherichia coli K-12.- 3.3. Attenuation Control of the ?-Lactamase Gene of Escherichia coli.- 3.4. Attenuation Control of the Aspartate Transcarbamoylase (pyrBI) Operon.- 3.5. Attenuation Control of the Phenylalanyl-Transfer RNA Synthetase (pheST) Operon.- 3.6. Translational Control of the Erythromycin Resistance Gene.- 3.7. Attenuation Control of the Tryptophanase (tna) Operon.- References.

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Translational Regulation of Gene Expression