of Volume 3.- 1 Metastable Phases Produced by Rapid Quenching from the Vapor and the Liquid.- 1. Introduction.- 1.1. Definition.- 1.2. Kinetic Considerations.- 1.3. Free Energy and Phase Diagram Considerations.- 1.4. Energetic Considerations.- 1.5. Structural Considerations.- 1.6. Classification of Metastable Phases and Outline of Chapter.- 2. Experimental Techniques.- 2.1. Evaporation.- 2.2. Sputtering.- 2.3. Electrodeposition.- 2.4. Rapid Liquid Quenching.- 3. Amorphous Phases.- 3.1. Elemental Amorphous Phases.- 3.2. Alloy Amorphous Phases.- 3.3. Structural Analysis.- 3.4. Electrical Properties.- 3.5. Magnetic Properties.- 3.6. Transformation Kinetics.- 4. Metastable Elemental and Near-Elemental Crystalline Phases.- 4.1. Topologically Close-Packed Structures.- 4.2. Spherically Close-Packed Structures.- 5. Metastable Crystalline Intermediate Alloy Phases.- 5.1. Occurrence and Study of Intermediate Alloy Phases.- 5.2. Structures and Crystal Chemistry of Metastable Intermediate Phases.- 5.3. Further Structural Relationships.- 6. Supersaturated Terminal or Intermediate Solid Solutions.- 6.1. Occurrence and Study of Extended Solid Solutions.- 6.2. Crystal Chemistry and Properties of Metastable Solid Solutions.- 7. Concluding Remarks.- 7.1. Significance of Research on Metastable Phases.- 7.2. Review of Metastable Phase Formation.- 7.3. Alternate Methods and Products of Metastable Phase Preparation.- 7.4. Present and Suggested Applications of Metastable Phases.- 7.5. Areas for Further Research.- Acknowledgment.- References.- 2 Inclusion Compounds.- 1. Introduction.- 2. Metallic Clathrates.- 2.1. Electrical Properties.- 2.2. Low-Temperature Heat Capacity.- 3. Boron Compounds.- 3.1. Icosahedral Grouping.- 3.2. Octahedral Grouping.- 4. Graphite Intercalation Compounds.- 4.1. Introduction.- 4.2. Compounds with Electron Donors.- 4.3. Compounds with Electron Acceptors.- 4.4. Order-Disorder Transitions.- 4.5. Reaction Mechanisms.- 4.6. Fermi Surface and Transport Measurements.- 4.7. Superconductivity.- 4.8. Spin Resonance.- 4.9. Magnetic Properties.- 5. Chalcogenide Intercalation Compounds.- 5.1. The Layered Chalcogenides.- 5.2. The Intercalation Compounds of Layered Dichalcogenides and Elemental Metals.- 5.3. Molecular Intercalates.- 6. Layered Halide and Similar Intercalation Compounds.- 7. Tungsten Bronzes and Similar Compounds.- Epilogue.- References.- 3 The Structural Chemistry of Some Complex Oxides: Ordered and Disordered Extended Defects.- 1. Introduction.- 1.1. Types of Defects in Crystals.- 1.2. Methods of Observing Extended Defects.- 2. Complex Structures Based on Crystallographic Shear.- 2.1. Introduction.- 2.2. Compounds Containing One-Dimensional Crystallographic Shear.- 2.3. Compounds Containing Two-Dimensional Crystallographic Shear.- 2.4. Disorder in Block Structures.- 2.5. Disorder in Systems Related to the Tetragonal Tungsten Bronze.- 3. The Fluorite-Related Structures.- 3.1. Introduction.- 3.2. The Relationship between the Fluorite and Other Structures.- 3.3. Fluorite-Related Phases with Excess Oxygen.- 3.4. The Fluorite-Related Homologous Series.- 4. Extended Defects in the NaCl Structure Type.- 4.1. Nonstoichiometry and Defect Structure of Titanium and Vanadium Monoxides.- 4.2. The Defect Structure of Fe1?xO.- 5. Stoichiometry and Structure of Highly Conducting Solid Electrolytes.- 5.1. The Structure of Calcia-Stabilized Zirconia.- 5.2. The Structure of Some Beta-Aluminas.- 5.3. The Structure of Halide and Chalcogenide Solid Electrolytes.- Acknowledgment.- References.- 4 Interstitial Phases.- 1. Introduction.- 2. Crystallography of Interstitial Phases.- 2.1. Geometrical Basis of Close Packing.- 2.2. The Radius Ratio.- 2.3. Crystal Structures of Interstitial Phases.- 2.4. Polymorphism in Interstitial Compounds.- 2.5. Ternary Interstitial Phases.- 3. Properties of Interstitial Phases.- 3.1. Phase Diagrams.- 3.2. Melting Points.- 3.3. Thermodynamic Properties.- 3.4. Hardness.- 3.5. Thermal Expansion.- 3.6. Electrical Resistivity.- 3.7. Superconductivity.- 3.8. Diffusion.- 3.9. Bonding.- 4. Summary.- References.- 5 Inorganic Amorphous Solids and Glass-Ceramic Materials.- 1. Introduction.- 2. Atomic Structure of Glasses.- 2.1. Models of Glass Structure.- 2.2. Structure of Oxide Glasses.- 2.3. Structure of Nonoxide Glasses.- 2.4. Effects of Pressure, Thermal History, and Irradiation.- 3. Submicrostructure of Glasses.- 3.1. Introduction.- 3.2. Spinodal Decomposition vs. Nucleation Growth Coalescence.- 4. Electronic Structure of Glasses.- 4.1. Introduction.- 4.2. Density of States.- 5. Glass Formation.- 6. Macrostructure of Glasses.- 7. Glass-Ceramic Materials.- 7.1. Commercial Glass-Ceramic Systems.- 7.2. Microstructural Features and Properties.- 8. Concluding Discussion.- References.- 6 The Morphology of Crystalline Synthetic Polymers.- 1. Introduction.- 1.1. General and Historical.- 1.2. Scope of the Chapter.- 2. Crystallinity in Polymers.- 2.1. Requisites for Crystallization.- 2.2. Polymer Crystal Structures.- 2.3. Degree of Crystallinity.- 3. The Morphology of Polymers Crystallized from Solution.- 3.1. Preliminary Remarks.- 3.2. Crystallization Procedures, with Comments on Polydispersity in the Molecular Weight of Polymers and the Incidence of Fractionation during Crystallization.- 3.3. Optical and Electron Microscopy, with Comments on the Susceptibility of Polymers to Electron Irradiation.- 3.4. Polymer Crystals.- 4. The Morphology of Polymers Crystallized from the Melt.- 4.1. Preliminary Remarks.- 4.2. General Comments on Spherulites and Their Structures.- 4.3. The Fine Structure of Polymer Spherulites.- 4.4. Crystallization under Pressure.- 5. Concluding Remarks.- Acknowledgments.- References.- 7 The Rate of Crystallization of Linear Polymers with Chain Folding.- 1. Introduction.- 1.1. Aims and Objectives.- 1.2. Nature of Crystallizable Linear Macromolecules.- 1.3. Chain-Folded Crystals from Bulk and Dilute Solutions.- 2. Thermodynamic Preliminaries and Work of Chain Folding.- 2.1. Fold Surface Free Energies from Melting Point and Crystal Thickness Data.- 2.2. Melting Behavior.- 2.3. Interpretation of ?e in Terms of Fold Structure.- 2.4. The Driving Force for Crystallization in Strongly Subcooled Systems.- 3. Theory of Growth and Lamellar Thickness.- 3.1. Approach and Model.- 3.2. Calculation of the Total Flux.- 3.3. Initial Lamellar Thickness.- 3.4. Growth Rate.- 3.5. Interpretation of ?.- 3.6. Effect of Chain Ends.- 4. Comparison of Theory and Experiment.- 4.1. Objectives.- 4.2. Growth Rate versus Crystallization Temperature Curves.- 4.3. Polymers Where Data Allow Test of Expressions for Both Growth Rate and Lamellar Thickness.- 4.4. The Fold Period as a Function of the Undercooling in Dilute Solutions: Verification of lg* = (C1/?T) + C2.- 4.5. Generalized Treatment to Obtain Work of Chain Folding from Kg.- 5. Theories with Fluctuations of Fold Period.- 6. Homogeneous Nucleation in Polymers.- Acknowledgments.- Note Added in Proof.- References.- 8 Organic Molecular Crystals: Anthracene.- 1. Introduction.- 2. The Molecule.- 3. The Crystal.- 4. Optical Absorption.- 4.1. Singlet Excitons.- 4.2. Triplet Excitons.- 5. Fluorescence.- 6. Energy Transport.- 6.1. Singlet Excitons.- 6.2. Triplet Excitons.- 7. Electrons and Holes.- 7.1. Electron and Hole Transport.- 7.2. Electron and Hole Generation.- 8. Theory.- 8.1. Excitons.- 8.2. Electrons and Holes.- References.- 9 Organic Molecular Crystals: Charge-Transfer Complexes.- 1. Introduction.- 1.1. Contrast of Solution and Solid-State Complexes.- 1.2. Molecular-Exciton Approach.- 1.3. ?-Molecular Ion-Radical Solids.- 1.4.. Hubbard Models and CT Crystals.- 1.5. Relation to Other Work: Scope of the Review.- 2. Development of Phenomenological Theory.- 2.1. The Ion-Radical Dimer.- 2.2. Intermolecular Forces.- 2.3. Orthonormal Basis for Dimers.- 2.4. Site Representation for Molecular Crystals.- 2.5. Minimum Basis for CT Crystals.- 2.6. Fermion Representation of H.- 2.7. Matrix Elements.- 2.8. Charge-Transfer Hamiltonian.- 3. Classification of ?-Molecular CT Crystals.- 3.1. Structural Variations of Molecular Stacks.- 3.2. Collective Physical Properties.- 3.3. Mixed, Simple Stacks: Neutral or Ionic.- 3.4. Crystals of Dimers and Complex CT Crystals.- 3.5. FR Crystals with Simple, Regular Stacks.- 3.6. Segregated Simple Alternating Stacks.- 3.7. Complex, Regular FR Stacks: Fractional Charges.- 3.8. Complex, Segregated, Alternating FR Stacks.- 4. Electronic Properties of Ion-Radical Crystals.- 4.1. Excitations of the CT Hamiltonian.- 4.2. Optical Properties: CT Bands.- 4.3. Electric Conduction.- 4.4. Magnetic Properties: Antiferromagnetic Exchange.- 4.5. One-Dimensionality and Spin Dynamics.- 5. Quantum Computations.- 5.1. Approximate Molecular Computations.- 5.2. Crystal-Perturbed States.- 5.3. Improved Matrix Elements.- 5.4. Hubbard and Heisenberg Models.- 5.5. Hubbard Model Computations.- 6. Conclusions.- Acknowledgments.- References.