Modern Aspects of Electrochemistry

No. 15

Specificaties
Paperback, 362 blz. | Engels
Springer US | 0e druk, 2012
ISBN13: 9781461574637
Rubricering
Springer US 0e druk, 2012 9781461574637
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This volume contains five chapters covering four topics of current research interest: splitting of water, lithium batteries, intercalation, and fundamental aspects of electrode processes. Two chapters are devoted to splitting of water. The first chapter, by Gutmann and Murphy, presents a comprehensive review of the classical methods of splitting water by electrolysis and also presents some novel techniques for splitting water. Chapter 2, by Gratzel, surveys the current research being done on water splitting using visible light. Two chapters are included that deal with the timely topics of lithium batteries and intercalation. The first, Chapter 3 by Marincic, presents a practical guide to the recent development of lithium batteries, while the second, Chapter 4 by McKinnon and Haering, presents and discusses various theoretical approaches to inter­ calation. The last chapter in the book, Chapter 5 by Khan, presents a survey of many of the fundamental concepts and misconceptions of electrode kinetics as applied to semiconductors in particular.

Specificaties

ISBN13:9781461574637
Taal:Engels
Bindwijze:paperback
Aantal pagina's:362
Uitgever:Springer US
Druk:0

Inhoudsopgave

1 The Electrochemical Splitting of Water.- I. Introduction.- II. Units.- III. Electrochemistry.- IV. Improvements Achieved in Water Electrolysis.- 1. Oxygen Evolution Electrocatalysts.- 2. Hydrogen Evolution Reaction.- 3. Cell Membrane Developments.- V. Novel Ways to Reduce Activation Overvoltage.- 1. Photoelectrochemical Decomposition.- 2. Electrolysis at Elevated Temperatures (150–300°C).- 3. Improving the Mass Transport.- 4. Pulse Electrolysis.- 5. Ultrasonics.- 6. Alternative Anodic Reactions in Water Splitting.- VI. Magneto-Electrolysis.- VII. Steam Electrolysis.- VIII. Series or Parallel Electrolyzers.- IX. Economical Electrolyzers.- X. Advanced Electrolyzers.- XI. Super Electrolyzers.- XII. State-of-the-Art Electrolyzers.- 1. Brown-Boveri and Cie Electrolyzers.- 2. DeNora SPA Electrolyzers.- 3. Lurgi GmbH Electrolyzers.- 4. Norsk Hydro-Electrolyzers.- 5. Electrolyzer Corporation Electrolyzers.- 6. Teledyne Energy System’s Electrolyzers.- 7. General Electric’s Solid Polymer Electrolyte Electrolyzer.- XIII. Applications of Electrolytic Hydrogen Generator Technology.- 1. Markets for Oxygen Gas.- 2. Chlorine Production.- 3. Other Applications.- XIV. Cost of Hydrogen Production.- 1. Cost Comparison of Hydrogen Derived from Various Sources and between Hydrogen and Other Fuels.- XV. Hydroelectric Resources.- XVI. Hydrogen Storage.- 1. Bulk Hydrogen Storage.- 2. Cryogenic Hydrogen Storage.- 3. Metal Hydrides.- 4. Microcavity Storage System.- 5. Hydrogen Encapsulation in Zeolites.- 6. Liquid Organic Hydrides.- 7. Metal-Aromatics and Transition Metal Complexes as Hydrogen Storers.- 8. Storage by Conversion to Ammonia and Methanol.- References.- 2 Interfacial Charge Transfer Reactions in Colloidal Dispersions and Their Application to Water Cleavage by Visible Light.- I. Introduction.- II. Dynamics of Photoinduced Electron-Transfer Reactions in Simple Micellar Assemblies.- 1. General Kinetic Features of Light-Induced Redox Reactions.- 2. Specific Features of Light-Induced Redox Reactions in Micellar Assemblies.- 3. Functional Micelles, Electron and Hole Storage Devices.- III. Interfacial Electron- and Hole-Transfer Reactions in Colloidal Semiconductor Dispersions.- 1. Colloidal TiO2 Particles.- 2. Interfacial Charge Transfer in Colloidal CdS Solutions.- IV. The Principles of Redox Catalysis.- V. Light-Induced Water Cleavage in Microheterogeneous Solution.- 1. Choice of Light-Harvesting Unit.- 2. Selection of Highly Active Redox Catalysts.- 3. Visible Light-Induced Water Cleavage in Systems Containing Sensitizer, Relay, and Redox Catalyst.- 4. Water Cleavage through Sensitization of Colloidal Semiconductors with a Large Band Gap.- 5. Water Splitting through Direct Band-Gap Excitation of Colloidal Semiconductor Dispersions.- VI. Splitting of Hydrogen Sulfide and Reduction of Carbon-Dioxide as Alternative Light-Energy-Storing Reactions.- 1. Visible Light-Induced Cleavage of H2S.- 2. Light-Induced Reduction of Carbon Dioxide.- VII. Conclusions.- References.- 3 Lithium Batteries with Liquid Depolarizers.- I. Introduction.- II. Discharge Reaction Mechanism.- 1. Cathodic Reduction of SO2 and SO3.- 2. Cathodic Reduction of Oxyhalides.- 3. Anodic Oxidation of Lithium.- 4. Lithium Passivation.- III. Battery Design Procedures.- 1. Concentric Electrode Structure.- 2. Wound Electrode Structure.- 3. Parallel Plate Structure.- IV. Materials of Construction.- 1. Cell Hardware.- 2. Current Collectors.- 3. Catalytic Cathode Materials.- 4. Separators and Insulators.- 5. Electrolyte Materials.- 6. Lithium.- V. Processing and Assembling.- 1. Environmental Requirements.- 2. Anode Subassemblies.- 3. Cathode Subassemblies.- 4. Electrolytes.- 5. Process Control.- 6. Typical Flow Charts.- 7. Prospects for Automation.- VI. Testing and Evaluation.- 1. Capacity vs. Discharge Rate.- 2. Internal Impedance.- 3. Self-Discharge.- 4. Voltage Delay.- VII. Applications.- 1. Long-Term Applications.- 2. Maximized Power Requirements.- 3. Intermittent and Pulse Applications.- 4. Applications at Extreme Temperatures.- 5. Resistance to Abuse.- 6. Hazard Analysis.- VIII. Deactivation, Disposal, and Reclamation.- 1. Destructive Deactivation and Disposal.- 2. Reprocessing and Reclamation.- References.- 4 Physical Mechanisms of Intercalation.- I. Introduction.- 1. Intercalation Batteries.- II. Review of Intercalation Systems.- 1. Layered Transition Metal Dichalcogenides.- 2. Metal Dioxides with Rutile-Related Structures.- 3. Intercalation of Graphite.- 4. Hydrogen in Metals.- III. Thermodynamics of Intercalation and Lattice Gas Models.- 1. Lattice Gas Models Applied to Intercalation Systems.- 2. Lattice Gas Models with Interactions.- 3. Mean-Field Solution of the Problem of Ordering.- 4. Other Techniques for Solving Lattice Gas Problems.- 5. Breaking the x = 1/2 Symmetry.- 6. Large Changes in the Host.- IV. Interactions between Intercalated Atoms.- 1. Electronic Interactions.- 2. Elastic Interactions.- V. Kinetics of Intercalation Cells.- 1. Motion of the Intercalate in the Host.- 2. Behavior of D (x).- 3. Diffusion Overvoltages for Constant D.- 4. Diffusion Overvoltages for Phase-Boundary Motion.- VI. One-Dimensional Lattice Gas.- 1. Exact and Mean-Field Solutions.- 2. Model Calculations of Diffusion.- VII. Conclusions.- References.- 5 Some Fundamental Aspects of Electrode Processes.- I. Introduction.- II. The Meaning of Absolute Scale Potential in Electrode Kinetics.- III. The Effect of Applied Potential on the Fermi Level in Metal and Semiconductors.- IV. Fermi Energies in Solution.- V. Distribution of Electron States in Ions in Solution.- VI. The Calculation of Electronic Energy States of Ions in Solution.- VII. Applications of the Born—Landau Equation.- 1. Neglect of Electrostatic Interaction with the First Layer in the Solvent Shell.- 2. Absence of Correlation between Experimental and Bornian Theoretical Values of the Free Energy of Activation.- 3. Volume of Activation.- 4. Solvent Effects.- 5. Measurements in D2O Solution.- 6. The Tafel Linearity.- 7. Are Outer-Shell-Dominated Reactions Rare?.- VIII. Nonadiabaticity.- 1. Theoretical Work.- 2. Experimental Work.- IX. The Mechanism of Proton Transfer at Interfaces.- 1. Activation of the H2O—H+ Bond.- 2. Equal ?F? for CH3CNH+ and H3O+ Ions.- 3. Isotope Effect in Proton-Transfer Reactions.- 4. The Dependence of Reaction Rates on M—H Bond Strength.- 5. Harmonic Oscillator Model to Proton-Transfer Reactions.- X. The Semiconductor/Solution Interface.- XI. Auger Neutralization.- Notation.- References.

Rubrieken

    Personen

      Trefwoorden

        Modern Aspects of Electrochemistry