1 The Electrochemical Splitting of Water.- I. Introduction.- II. Units.- III. Electrochemistry.- IV. Improvements Achieved in Water Electrolysis.- 1. Oxygen Evolution Electrocatalysts.- 2. Hydrogen Evolution Reaction.- 3. Cell Membrane Developments.- V. Novel Ways to Reduce Activation Overvoltage.- 1. Photoelectrochemical Decomposition.- 2. Electrolysis at Elevated Temperatures (150–300°C).- 3. Improving the Mass Transport.- 4. Pulse Electrolysis.- 5. Ultrasonics.- 6. Alternative Anodic Reactions in Water Splitting.- VI. Magneto-Electrolysis.- VII. Steam Electrolysis.- VIII. Series or Parallel Electrolyzers.- IX. Economical Electrolyzers.- X. Advanced Electrolyzers.- XI. Super Electrolyzers.- XII. State-of-the-Art Electrolyzers.- 1. Brown-Boveri and Cie Electrolyzers.- 2. DeNora SPA Electrolyzers.- 3. Lurgi GmbH Electrolyzers.- 4. Norsk Hydro-Electrolyzers.- 5. Electrolyzer Corporation Electrolyzers.- 6. Teledyne Energy System’s Electrolyzers.- 7. General Electric’s Solid Polymer Electrolyte Electrolyzer.- XIII. Applications of Electrolytic Hydrogen Generator Technology.- 1. Markets for Oxygen Gas.- 2. Chlorine Production.- 3. Other Applications.- XIV. Cost of Hydrogen Production.- 1. Cost Comparison of Hydrogen Derived from Various Sources and between Hydrogen and Other Fuels.- XV. Hydroelectric Resources.- XVI. Hydrogen Storage.- 1. Bulk Hydrogen Storage.- 2. Cryogenic Hydrogen Storage.- 3. Metal Hydrides.- 4. Microcavity Storage System.- 5. Hydrogen Encapsulation in Zeolites.- 6. Liquid Organic Hydrides.- 7. Metal-Aromatics and Transition Metal Complexes as Hydrogen Storers.- 8. Storage by Conversion to Ammonia and Methanol.- References.- 2 Interfacial Charge Transfer Reactions in Colloidal Dispersions and Their Application to Water Cleavage by Visible Light.- I. Introduction.- II. Dynamics of Photoinduced Electron-Transfer Reactions in Simple Micellar Assemblies.- 1. General Kinetic Features of Light-Induced Redox Reactions.- 2. Specific Features of Light-Induced Redox Reactions in Micellar Assemblies.- 3. Functional Micelles, Electron and Hole Storage Devices.- III. Interfacial Electron- and Hole-Transfer Reactions in Colloidal Semiconductor Dispersions.- 1. Colloidal TiO2 Particles.- 2. Interfacial Charge Transfer in Colloidal CdS Solutions.- IV. The Principles of Redox Catalysis.- V. Light-Induced Water Cleavage in Microheterogeneous Solution.- 1. Choice of Light-Harvesting Unit.- 2. Selection of Highly Active Redox Catalysts.- 3. Visible Light-Induced Water Cleavage in Systems Containing Sensitizer, Relay, and Redox Catalyst.- 4. Water Cleavage through Sensitization of Colloidal Semiconductors with a Large Band Gap.- 5. Water Splitting through Direct Band-Gap Excitation of Colloidal Semiconductor Dispersions.- VI. Splitting of Hydrogen Sulfide and Reduction of Carbon-Dioxide as Alternative Light-Energy-Storing Reactions.- 1. Visible Light-Induced Cleavage of H2S.- 2. Light-Induced Reduction of Carbon Dioxide.- VII. Conclusions.- References.- 3 Lithium Batteries with Liquid Depolarizers.- I. Introduction.- II. Discharge Reaction Mechanism.- 1. Cathodic Reduction of SO2 and SO3.- 2. Cathodic Reduction of Oxyhalides.- 3. Anodic Oxidation of Lithium.- 4. Lithium Passivation.- III. Battery Design Procedures.- 1. Concentric Electrode Structure.- 2. Wound Electrode Structure.- 3. Parallel Plate Structure.- IV. Materials of Construction.- 1. Cell Hardware.- 2. Current Collectors.- 3. Catalytic Cathode Materials.- 4. Separators and Insulators.- 5. Electrolyte Materials.- 6. Lithium.- V. Processing and Assembling.- 1. Environmental Requirements.- 2. Anode Subassemblies.- 3. Cathode Subassemblies.- 4. Electrolytes.- 5. Process Control.- 6. Typical Flow Charts.- 7. Prospects for Automation.- VI. Testing and Evaluation.- 1. Capacity vs. Discharge Rate.- 2. Internal Impedance.- 3. Self-Discharge.- 4. Voltage Delay.- VII. Applications.- 1. Long-Term Applications.- 2. Maximized Power Requirements.- 3. Intermittent and Pulse Applications.- 4. Applications at Extreme Temperatures.- 5. Resistance to Abuse.- 6. Hazard Analysis.- VIII. Deactivation, Disposal, and Reclamation.- 1. Destructive Deactivation and Disposal.- 2. Reprocessing and Reclamation.- References.- 4 Physical Mechanisms of Intercalation.- I. Introduction.- 1. Intercalation Batteries.- II. Review of Intercalation Systems.- 1. Layered Transition Metal Dichalcogenides.- 2. Metal Dioxides with Rutile-Related Structures.- 3. Intercalation of Graphite.- 4. Hydrogen in Metals.- III. Thermodynamics of Intercalation and Lattice Gas Models.- 1. Lattice Gas Models Applied to Intercalation Systems.- 2. Lattice Gas Models with Interactions.- 3. Mean-Field Solution of the Problem of Ordering.- 4. Other Techniques for Solving Lattice Gas Problems.- 5. Breaking the x = 1/2 Symmetry.- 6. Large Changes in the Host.- IV. Interactions between Intercalated Atoms.- 1. Electronic Interactions.- 2. Elastic Interactions.- V. Kinetics of Intercalation Cells.- 1. Motion of the Intercalate in the Host.- 2. Behavior of D (x).- 3. Diffusion Overvoltages for Constant D.- 4. Diffusion Overvoltages for Phase-Boundary Motion.- VI. One-Dimensional Lattice Gas.- 1. Exact and Mean-Field Solutions.- 2. Model Calculations of Diffusion.- VII. Conclusions.- References.- 5 Some Fundamental Aspects of Electrode Processes.- I. Introduction.- II. The Meaning of Absolute Scale Potential in Electrode Kinetics.- III. The Effect of Applied Potential on the Fermi Level in Metal and Semiconductors.- IV. Fermi Energies in Solution.- V. Distribution of Electron States in Ions in Solution.- VI. The Calculation of Electronic Energy States of Ions in Solution.- VII. Applications of the Born—Landau Equation.- 1. Neglect of Electrostatic Interaction with the First Layer in the Solvent Shell.- 2. Absence of Correlation between Experimental and Bornian Theoretical Values of the Free Energy of Activation.- 3. Volume of Activation.- 4. Solvent Effects.- 5. Measurements in D2O Solution.- 6. The Tafel Linearity.- 7. Are Outer-Shell-Dominated Reactions Rare?.- VIII. Nonadiabaticity.- 1. Theoretical Work.- 2. Experimental Work.- IX. The Mechanism of Proton Transfer at Interfaces.- 1. Activation of the H2O—H+ Bond.- 2. Equal ?F? for CH3CNH+ and H3O+ Ions.- 3. Isotope Effect in Proton-Transfer Reactions.- 4. The Dependence of Reaction Rates on M—H Bond Strength.- 5. Harmonic Oscillator Model to Proton-Transfer Reactions.- X. The Semiconductor/Solution Interface.- XI. Auger Neutralization.- Notation.- References.