Continuum Mechanics of Anisotropic Materials

Specificaties
Gebonden, 425 blz. | Engels
Springer New York | 2013e druk, 2013
ISBN13: 9781461450245
Rubricering
Springer New York 2013e druk, 2013 9781461450245
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

Specificaties

ISBN13:9781461450245
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:425
Uitgever:Springer New York
Druk:2013

Inhoudsopgave

<p>Chapter 1. Introduction </p><p><p>Chapter 2. Mechanical modeling of materials </p><p>2.1 Introduction</p><p>2.2 Models and the real physical world</p><p>2.3 Guidelines for modeling objects and solving mechanics problems</p><p>2.4 The types of models used in mechanics</p><p>2.5 The particle model</p><p>2.6 The rigid object model</p><p>2.7 The deformable continuum model </p><p>2.8 Lumped parameter models </p><p>2.9 Statistical models</p><p>2.10 Cellular automata</p><p>2.11 The limits of reductionism</p><p>2.12 References</p><p>Appendix 2A Laplace transform refresher</p><p>Appendix 2B First order differential equations</p><p>Appendix 2C Electrical analogs of the spring and dashpot models</p><p><p>Chapter 3. Basic continuum kinematics</p><p>3.1 The deformable material model, the continuum</p><p>3.2 Rates of change and the spatial representation of motion</p><p>3.3 Infinitesimal motions</p><p>3.4 The strain conditions of compatibility</p><p><p>Chapter 4. Continuum formulations of conservation laws </p><p>4.1 The conservation principles</p><p>4.2 The conservation of mass</p><p>4.3 The state of stress at a point</p><p>4.4 The stress equations of motion</p><p>4.5 The conservation of energy</p><p><p>Chapter 5. Formulation of constitutive equations </p><p>5.1 Guidelines for the formulation of constitutive equations</p><p>5.2 Constitutive ideas</p><p>5.3 Localization</p><p>5.4 Invariance under rigid object motions</p><p>5.5 Determinism</p><p>5.6 Linearization</p><p>5.7 Coordinate invariance</p><p>5.8 Homogeneous versus inhomogeneous constitutive models</p><p>5.9 Restrictions due to material symmetry</p><p>5.10 The symmetry of the material coefficient tensors</p><p>5.11 Restrictions on the coefficients representing material properties</p><p>5.12 Summary of results</p><p>5.13 Relevant literature </p><p><p>Chapter 6 Modeling material symmetry </p><p>6.1 Introduction </p><p>6.2 The representative volume element (RVE)</p><p>6.3 Crystalline materials and textured materials</p><p>6.4 Planes of mirror symmetry</p><p>6.5 Characterization of material symmetries by planes of symmetry</p><p>6.6 The forms of the 3D symmetric linear transformation A </p><p>6.7 The forms of the 6D symmetric linear transformation </p><p>6.8 Curvilinear anisotropy</p><p>6.9 Symmetries that permit chirality</p><p>6.10 Relevant literature </p><p><p>Chapter 7. Four linear continuum theories </p><p>7.1 Formation of continuum theories</p><p>7.2 The theory of fluid flow through rigid porous media</p><p>7.3 The theory of elastic solids</p><p>7.4 The theory of viscous fluids</p><p>7.5 The theory of viscoelastic materials</p><p>7.6 Relevant literature </p><p><p>Chapter 8 Modeling material microstructure </p><p>8.1 Introduction </p><p>8.2 The representative volume element (RVE)</p><p>8.3 Effective material parameters</p><p>8.4 Effective elastic constants</p><p>8.5 Effective permeability</p><p>8.6 Structural gradients</p><p>8.7 Tensorial representations of microstructure </p><p>8.8 Relevant literature </p><p><p>Chapter 9. Poroelasticity </p><p>9.1 Poroelastic materials</p><p>9.2 The stress-strain-pore pressure constitutive relation</p><p>9.3 The fluid content-stress-pore pressure constitutive relation</p><p>9.4 Darcy’s Law</p><p>9.5 Matrix material and pore fluid incompressibility constraints</p><p>9.6 The undrained elastic coefficients</p><p>9.7 Expressions of mass and momentum conservation</p><p>9.8 The basic equations of poroelasticity</p><p>9.9 The basic equations of incompressible poroelasticity</p><p>9.10 Some example isotropic poroelastic problems</p><p>9.11 An example: the unconfined compression of an anisotropic disc</p><p>9.12 Relevant literature </p><p><p>Chapter 10 Mixture </p><p>10.1 Introduction</p><p>10.2 Kinematics of mixtures</p><p>10.3 The conservation laws for mixtures</p><p>10.4 A statement of irreversibility in mixture processes</p><p>10.5 Donnan equilibrium and osmotic pressure</p><p>10.6 Continuum model for a charged porous medium; the governing equations</p><p>10.7 Linear irreversible thermodynamics and the four constituent mixture</p><p>10.8 Modeling swelling and compression experiments on the intervertebral disc</p><p>10.9 Relevant literature</p><p><p>Chapter 11. Kinematics and mechanics of large deformations </p><p>11.1 Large deformations</p><p>11.2 Large homogeneous deformations</p><p>11.3 Polar decomposition of the deformation gradients</p><p>11.4 The strain measures for large deformations</p><p>11.5 Measures of volume and surface change in large deformations</p><p>11.6 Stress measures</p><p>11.7 Finite deformation elasticity</p><p>11.8 The isotropic finite deformation stress-strain relation </p><p>11.9 Finite deformation hyperelasticity</p><p>11.10 Incompressible elasticity </p><p>11.11 Relevant literature</p><p><p> </p><p>Chapter 12. Plasticity Theory</p><p>12.1 Extension of von Mises criterion to anisotropic materials</p><p>12.2 Yield criteria for pressure sensitive anisotropic materials</p><p>12.3 Some particular deformation characteristics exhibited by granular materials (dilatancy/contractancy, anisotropy, hardening/softening, and shear localization).</p><p>12.4 Dilatant double shearing kinematics</p><p>12.5 Evolution equations for the material parameters</p><p>12.6 Numerical biaxial compression test of anisotropic granular materials</p><p>12.6 Numerical triaxial compression test of anisotropic granular materials</p><p>12.7 Plasticity theories for crystalline materials</p><p><p>Appendix A. Matrices and tensors </p><p>A.1 Introduction and rationale</p><p>A.2 Definition of square, column and row matrices</p><p>A.3 The types and algebra of square matrices</p><p>A.4 The algebra of n-tuples</p><p>A.5 Linear transformations</p><p>A.6 Vector spaces</p><p>A.7 Second rank tensors</p><p>A.8 The moment of inertia tensor</p><p>A.9 The alternator and vector cross products </p><p>A.10 Connection to Mohr’s circles</p><p>A.11 Special vectors and tensors in six dimensions</p><p>A.12 The gradient operator and the divergence theorem</p><p>A.13 Tensor components in cylindrical coordinates</p>

Rubrieken

    Personen

      Trefwoorden

        Continuum Mechanics of Anisotropic Materials