1 Stereochemical Principles.- 1.1 Introduction.- 1.2 Chirality.- 1.3 Diastereotopic Groups and Faces.- 1.4 Enantiotopic Groups and Faces.- 1.5 Homotopic Groups and Faces.- 1.6 Homochiral Relationships.- 1.7 Selectivity in Organic Synthesis.- 1.7.1 Chemoselectivity.- 1.7.2 Regioselectivity.- 1.7.3 Diastereoselectivity.- 1.7.4 Enantioselectivity.- 1.7.4.1 Reactions in Presence of Chiral Additives.- 1.7.4.2 Reactions Involving Covalent Linkages of Chiral Auxiliary Groups with Substrates.- 1.7.4.3 Reactions with Chiral Reagents.- 1.7.4.4 Reactions with Enzymes.- 1.8 References.- 2 Stereoselective Catalytic Reductions.- 2.1 Homogeneous Catalytic Hydrogenations.- 2.1.1 Hydrogenation of Olefins.- 2.1.1.1 Hydrogenation with Rh-complexes.- 2.1.1.1.1 Tetrasubstituted Olefins.- 2.1.1.1.2 Substituted Itaconate Esters.- 2.1.1.2 Hydrogenation with Ru-complexes.- 2.1.1.2.1 Allylic and Homoallylic Alcohols.- 2.1.1.2.2 Unsaturated Carboxylic Acids.- 2.1.1.2.3 Dicarboxylic Acids.- 2.1.1.2.4 Dehydroamino Acids.- 2.1.1.2.5 Prochiral Ketones.- 2.1.1.3 Hydrogenation with Ti-complexes.- 2.1.1.4 Hydrogenation with Co-complexes.- 2.1.1.5 Hydrogenation with Heterobimetallic Complexes.- 2.1.2 Catalytic Hydrosilylation.- 2.1.2.1 Catalytic Hydrosilylation of Olefins.- 2.1.2.2 Catalytic Hydrosilylation of Imines.- 2.1.3 Catalytic Hydrogenation of Ketones.- 2.1.3.1 Direct Hydrogenation of Simple Ketones.- 2.1.3.2 Direct Hydrogenation of Functionalized Ketones.- 2.1.3.2.1 With Rhodium-Diphosphine Catalysts.- 2.1.3.2.2 With Ruthenium Complexes.- 2.1.3.2.3 With Copper Complexes.- 2.1.3.3 Hydrogenation of Ketones via Derivatization.- 2.1.3.3.1 Hydrogenation of Simple Ketones via Hydrosilylation.- 2.1.3.3.2 Hydrogenation of Functionalized Ketones via Hydrosilylation.- 2.1.3.3.3 Hydrogenation of Ketones via Enol Phosphinates.- 2.2 Heterogeneous Catalytic Hydrogenations.- 2.2.1 Enantioselective Heterogeneous Catalytic Hydrogenations.- 2.2.2 Diastereoselective Heterogeneous Catalytic Hydrogenations.- 2.2.2.1 Asymmetric Hydrogenation of Carbon-Carbon Double Bonds.- 2.2.2.1.1 Hydrogenation of N-Acyl-?,ß-Dehydroamino Acids.- 2.2.2.1.2 Asymmetric Hydrogenation of Cyclic Dehydropeptides.- 2.2.2.2 Asymmetric Hydrogenation of other Carbonyl Compounds.- 2.2.2.2.1 Asymmetric Hydrogenation of Benzoylformic Acid Esters.- 2.2.2.2.2 Asymmetric Hydrogenation of ?-Keto Amides.- 2.2.2.3 Asymmetric Hydrogenation of Carbon-Nitrogen Double Bonds.- 2.2.2.3.1 Hydrogenation of Imines, Oximes and Hydrazones.- 2.3 References.- 3 Stereoselective Non-Catalytic Reductions.- 3.1 Enantioselective Non-Catalytic Reductions.- 3.1.1 Chiral Metal-hydride Complexes.- 3.1.1.1 Lithium Aluminium Hydride Modified with Chiral Groups.- 3.1.1.1.1 LAH Modified with Alcohols.- 3.1.1.1.2 LAH Modified with Amino Alcohols.- 3.1.1.2 Chiral Boranes and Borohydrides.- 3.1.1.2.1 Chiral Alkylboranes.- 3.1.1.2.2 Chiral Borohydride Reagents.- 3.1.1.2.2.1 NaBH4-derived Reagents.- 3.1.1.2.2.1.1 Phase Transfer Catalyzed Reductions.- 3.1.1.2.2.1.2 LiBH4 Reductions.- 3.1.1.2.2.2 Super Hydrides.- 3.1.2 Chiral Metal Alkyls and Alkoxides.- 3.1.3 Chiral Dihydropyridine Reagents.- 3.2 Diastereoselective Non-Catalytic Reductions.- 3.2.1 Cyclic Substrates.- 3.2.2 Acyclic Substrates.- 3.2.2.1 1, 2- Induction.- 3.2.2.2 1,3-, 1,4- and 1,6- Inductions.- 3.2.2.2.1 Cyclic Ketones.- 3.3 References.- 4 Stereoselective Carbon-Carbon Bond Forming Reactions.- 4.1 Nucleophilic Additions to Aldehydes and Ketones.- 4.1.1 Enantioselective Addition Reactions.- 4.1.2 Diastereoselective Addition Reactions.- 4.1.2.1 Diastereoselective Additions to Carbonyl Compounds.- 4.1.2.2 Diastereoselective Additions to Cyclic Ketones.- 4.1.3 Addition of Chiral Reagents.- 4.1.4 Stereoselectivity of Nucleophilic Addition Reactions.- 4.2 Asymmetric Catalytic Hydrocarbonylations.- 4.2.1 Asymmetric Hydroformylations.- 4.2.1.1 Asymmetric Hydroformylation with Homogeneous Catalysts.- 4.2.1.2 Asymmetric Hydroformylations with Heterogeneous Catalysts.- 4.2.2 Asymmetric Hydroesterification.- 4.3 Asymmetric Aldol Reactions.- 4.3.1 Stereochemistry of the Aldol Reaction.- 4.3.1.1 Transition State Models in the Aldol Reaction.- 4.3.2 Addition of Enolates to Achiral Aldehydes.- 4.3.2.1 Generation and Aldol Reactions of Enolates.- 4.3.2.1.1 Li Enolates in Aldol Reactions.- 4.3.2.1.1.1 Ketone Enolates.- 4.3.2.1.1.2 Ester and Lactone Enolates.- 4.3.2.1.1.3 Amide and Lactam Enolates.- 4.3.2.1.1.4 Thioester and Thioamide Enolates.- 4.3.2.1.1.5 Carboxylic Acid Dianions.- 4.3.2.1.2 Boron Enolates in Aldol Reactions.- 4.3.2.1.3. Magnesium Enolates in Aldol Reactions.- 4.3.2.1.4 Titanium Enolates in Aldol Reactions.- 4.3.2.1.5 Zinc Enolates in Aldol Reactions.- 4.3.2.1.6 Tin Enolates in Aldol Reactions.- 4.3.2.1.7 Silicon Enolates in Aldol Reactions.- 4.3.2.1.8 Zirconium Enolates in Aldol Reactions.- 4.3.3 Addition of Chiral Enolates to Achiral Aldehydes and Unsymmetric Ketones (the Cross Aldol Reaction).- 4.3.3.1 Metal Atoms as Chiral Centres in Aldol Reactions.- 4.3.3.2 Chiral Ketone Enolates in Aldol Reactions.- 4.3.3.3 Chiral Azaenolates in Aldol Reactions.- 4.3.4 Addition of Achiral Enolates to Chiral Aldehydes.- 4.3.5 Reactions of Chiral Aldehydes with Chiral Enolates.- 4.4 Allylmetal and Allylboron Additions.- 4.4.1 Configurational Stability of Allylmetal Compounds.- 4.4.2 Stereochemistry of Allylmetal Additions.- 4.4.3 Addition of Allylboron Compounds.- 4.4.4 Addition of Allyltitanium Compounds.- 4.4.5 Addition of Allylstannanes.- 4.4.6 Addition of Allylsilanes.- 4.4.7 Palladium-Catalyzed Asymmetric Allylation.- 4.4.8 Chromium (II)-Catalyzed Allylic Additions.- 4.4.9 Addition of other Allylmetals.- 4.5 Asymmetric Alkylation Reactions.- 4.5.1 Alkylation of Chiral Enolates.- 4.5.1.1 Exocyclic Enolates.- 4.5.1.2 Endocyclic Enolates.- 4.5.1.3 Norbornyl Enolates.- 4.5.2 Alkylation of Imine and Enamine Salts.- 4.5.3 Alkylation of Chiral Hydrazones.- 4.5.4 Alkylation of Chiral Oxazolines.- 4.5.4.1 Synthesis of Alkyl Alkanoic Acids.- 4.5.4.2 Synthesis of ?-Hydroxyacids.- 4.5.4.3 Synthesis of Butyrolactones and Valerolactones.- 4.5.4.4 Synthesis of ß-Alkylalkanoic Acid.- 4.5.4.5 Synthesis of Unsubstituted 1,4-Dihydropyridines.- 4.5.4.6 Synthesis of Resin-Bound Oxazolines.- 4.5.4.7 Alkylation via Diketopiperazines.- 4.5.5 Alkylation of Sulfoxides and Dithianes.- 4.5.6 Michael Addition Reactions.- 4.5.6.1 Addition of Chiral Anions.- 4.5.6.2 Addition of Achiral Anions Complexed with Chiral Ligands to Prochiral Michael Acceptors.- 4.5.6.3 Addition of Achiral Anions to Michael Acceptors Having One or More Chiral Centres.- 4.5.6.4 Addition with Optically Active Transition Metal-Ligand Catalysts.- 4.6 Pericyclic Reactions.- 4.6.1 Asymmetric Cycloaddition Reactions.- 4.6.1.1 Asymmetric Diels-Alder Reactions.- 4.6.1.1.1 Addition to Chiral Dienophiles.- 4.6.1.1.2 Addition to Chiral Dienes.- 4.6.1.1.3 Chiral Catalysts.- 4.6.2 Asymmetric [2+2] Cycloadditions.- 4.6.3 Asymmetric 1,3-Dipolar [3+2] Cycloadditions.- 4.6.4 Sigmatropic Rearrangements.- 4.6.4.1 [3, 3] Sigmatropic Rearrangements.- 4.6.4.2 [2, 3] Sigmatropic (Wittig) Rearrangements.- 4.6.4.2.1 Allylsulfenate Rearrangements.- 4.6.5 Ene Reactions.- 4.6.5.1 Intermolecular Ene Reactions.- 4.6.5.2 Intramolecular Ene Reactions.- 4.7 References.- 5 Asymmetric Oxidations.- 5.1 Asymmetric Epoxidation.- 5.1.1 Asymmetric Epoxidation of Allylic Alcohols.- 5.1.1.1 Katsuki-Sharpless Epoxidation.- 5.1.2 Asymmetric Epoxidation of other Substrates.- 5.2 Asymmetric Oxidation of Sulfides.- 5.3 Asymmetric Oxidation of Selenides.- 5.4 Asymmetric Hydroxylations.- 5.4.1 Vicinal Hydroxylations.- 5.5 Asymmetric Oxidation of Aromatic Substrates via Donor-Acceptor Interaction.- 5.6 References.- 6 Asymmetric Carbon-Heteroatom Bond Formations.- 6.1 Carbon-Oxygen Bond Formation.- 6.1.1 Asymmetric Halolactonization.- 6.1.2 Asymmetric Hydroboration.- 6.2 Carbon-Nitrogen Bond Formation.- 6.2.1 Halocyclization.- 6.2.1.1 Iodolactamization.- 6.2.2 Mercuricyclization.- 6.3 Carbon-Sulfur Bond Formation.- 6.4 Carbon-Phosphorus Bond Formation.- 6.5 Stereoselective C-H Bond Formation and Proton Migration.- 6.6 References.- 7 Enzyme-Catalyzed Reactions.- 7.1 Enzyme Specificity.- 7.1.1 Enantiomeric Specificity of Enzymes.- 7.1.2 Prochiral Stereospecificity.- 7.1.2.1 Additions to Stereoheterotopic Faces.- 7.1.2.2 Stereoheterotopic Groups and Atoms.- 7.2 Meso Compound Transformations.- 7.3 Multienzyme Systems.- 7.4 References.- 8 Stereoselective Free Radical Reactions.- 8.1 Free Radical Chain Reactions.- 8.1.1 The Tin Hydride Method.- 8.1.1.1 Intramolecular Radical Cyclizations.- 8.1.1.2 Intermolecular Radical Additions.- 8.1.2 The Mercury Hydride Method.- 8.1.2.1 Intramolecular Cyclization Reactions.- 8.1.2.2 Intermolecular Radical Reactions.- 8.1.2.2.1 Cyclic Radicals.- 8.1.2.2.2 Acyclic Substrates.- 8.1.3 The Fragmentation Method.- 8.1.4 The Barton (Thiohydroxamate Ester) Method.- 8.1.5 The Atom Transfer Method.- 8.1.5.1 Hydrogen Atom Transfer Addition and Cyclization.- 8.1.5.2 Halogen Atom Transfer.- 8.1.5.2.1 Halogen Atom Transfer Additions.- 8.1.5.2.2 Halogen Atom Transfer Cyclizations.- 8.1.5.2.3 Halogen Atom Transfer Annulations.- 8.1.6 Heteroatom-Halogen Donors.- 8.1.7 Organocobalt Transfer Method.- 8.2 Non-Chain Radical Reactions.- 8.3 References.- 9 Miscellaneous Stereoselective Reactions.- 9.1 Asymmetric Cyclopropanations.- 9.2 References.