1 Introduction: Charles Townes as I Have Known Him.- 2 Methane Optical Frequency Standard.- 2.1 Introduction.- 2.2 Two-mode He-Ne Laser with a Methane Absorption Cell.- 2.3 Absolute Frequency Measurements.- 2.4 Determination of the Unperturbed Transition Frequency(? = 3.39 ?m).- 2.5 Theoretical Estimates of Methane Standard Accuracy.- 2.5.1 Second-order Doppler Effect.- 2.5.2 Detuning of the Active and Absorption Line Centers.- 2.5.3 Transverse Inhomogeneity of the Gain.- 2.6 Future Possibilities.- 3 Mid-infrared Lines as Astrophysical Diagnostics: Two Decades of Problems and Promise.- 3.1 Youthful Enthusiasm.- 3.2 General Confusion.- 3.3 Maybe We Know What We’re Doing After All.- 3.4 Conclusion.- 4 The Laser Stabilitron.- 4.1 Background.- 4.2 Method of Intensity Stabilization.- 4.3 Coupled Field Equations and Photon Noise.- 4.4 Possible Systems for Realizing a Stabilitron.- 5 Self-Regulated Star Formation in Molecular Clouds.- 5.1 Introduction.- 5.2 Structure and Stability of Molecular Clouds.- 5.2.1 Gravitational Stability.- 5.2.2 The Dissipation Problem.- 5.3 Self-Regulated Star Formation.- 5.3.1 Energy Gain: Low-Mass Star Formation.- 5.3.2 Equilibrium Star Formation Rate.- 5.3.3 Photoionization-regulated Star Formation.- 5.3.4 Self-regulated Equilibrium States.- 5.4 Discussion.- 5.5 Summary.- 5.6 Acknowledgments.- 6 Long-baseline Interferometric Imaging at 11 Microns with 30 Milliarcsecond Resolution.- 6.1 Introduction.- 6.2 The Infrared Spatial Interferometer.- 6.3 Highlights of Recent Results from the ISI.- 6.3.1 Broad Conclusions on Dust Shell Characteristics.- 6.3.2 Masers.- 6.4 Direct Inversion of Visibility Data.- 6.4.1 Methodology.- 6.4.2 Results.- 6.5 Conclusions.- 6.6 Acknowledgments.- 7 Ammonia in the Giant Planets.- 7.1 Introduction.- 7.2 The Upper Atmospheres of Jupiter and Saturn.- 7.3 The Collision of Comet Shoemaker-Levy 9 with Jupiter.- 7.4 Acknowledgments.- 8 Collision Broadening and Radio-frequency Spectroscopy.- 8.1 Prehistory.- 8.2 Emission Spectroscopy.- 8.3 Laboratory Measurements of Microwave Absorption.- 8.4 The Inversion Spectrum of Ammonia.- 8.5 Further Studies of Collision Broadening at Oxford.- 8.6 High Resolution Microwave Spectroscopy.- 8.7 The Switch to Electron Paramagnetic Resonance.- 8.8 Atomic and Molecular Beams.- 8.9 Conclusion.- 8.10 Postscript.- 9 Meeting Charles H. Townes.- 10 Population Inversion and Superluminality.- 10.1 Introduction: The Ammonia Maser Revisited.- 10.2 Historical Review of Some Faster-than-Light Phenomena.- 10.3 Theory of Wave Packet Propagation in Transparent, Population-inverted Media.- 10.4 The Kramers-Kronig Relations Necessitate Superluminality.- 10.5 Considerations of Energy and of Superposition.- 10.6 Einstein Causality, and Sommerfeld and Brillouin’s Wave Velocities.- 10.7 An Experiment in an Optically Pumped Rubidium Vapor Cell.- 10.8 Concluding Personal Remarks.- 10.9 Acknowledgments.- 11 The Autler-Townes Effect Revisited.- 11.1 Introduction.- 11.2 Dressed-atom Approach to the Autler-Townes Effect.- 11.3 The Autler-Townes Effect in the Optical Domain.- 11.3.1 Case of Two Optical Transitions Sharing a Common Level.- 11.3.2 Single Optical Transition—The Mollow Triplet.- 11.4 The Autler-Townes Effect in Cavity Quantum Electrodynamics.- 11.5 Doublets of Dressed States with a Position-dependent Rabi Frequency.- 11.5.1 Gradient (or Dipole) Forces.- 11.5.2 High Intensity Sisyphus Effect.- 12 Parity Nonconservation in Atoms and Searches for Permanent Electric Dipole Moments.- 12.1 Introduction.- 12.2 Parity Nonconservation in Atoms.- 12.2.1 General Background.- 12.2.2 PNC Experiments.- 12.3 Search for Electric Dipole Moments.- 12.4 A Brief Personal Note.- 13 Stark Dynamics and Saturation in Resonant Coherent Anti-Stokes Raman Spectroscopy.- 13.1 Introduction.- 13.2 Weak Ground State Coupling Limit.- 13.3 Pure Raman Saturation.- 13.4 Full Resonance.- 14 A Raman Study of Fluorinated Ethanes Adsorbed on Zeolite NaX.- 14.1 Introduction.- 14.2 Experimental.- 14.3 Results and Discussion.- 14.3.1 Gas Phase.- 14.3.2 HFCs adsorbed on NaX.- 14.4 Conclusion.- 14.5 Acknowledgments.- 15 Laser Light-scattering Spectroscopy of Supercooled Liquids and the Glass Transition.- 15.1 Introduction.- 15.2 Experiments.- 15.3 Comparison with MCT.- 15.4 Acknowledgments.- 16 The Electronic Emission Spectra of Triatomic Hydrogen: The 6025? Bands of H2D and HD2.- 16.1 Introduction.- 16.2 Observed Spectra.- 16.3 Assignments.- 16.4 Predissociation and Line Widths.- 16.5 Discussion and Conclusion.- 17 Limitations for Frequency-based Absolute Length Measurements.- 17.1 Introduction.- 17.2 Basics.- 17.3 Accuracy Estimate.- 17.4 Conclusions.- 18 Microcavity Quantum Electrodynamics.- 18.1 Introduction.- 18.2 Mode Structure and Field Quantization in the Microcavity.- 18.3 Two Atom Dynamics: Correlated Spontaneous Emission and Relativistic Causality.- 18.4 Field Commutation Relations and Field Propagator.- 18.5 Electron Mass Renormalization.- 19 Testimonial for Celebration of Professor Charles Townes’ 80th Birthday.- 20 Marine Physical Laboratory: A Brief History.- 20.1 Introduction.- 20.2 World War II Research and the Creation of MPL.- 20.3 Research History.- 20.4 Research Platforms and Devices.- 20.4.1 Deep Tow Instrumentation System.- 20.4.2 Floating Instrument Platform (FLIP).- 20.4.3 Doppler Sonar Development.- 20.5 Acknowledgments.- 21 Searching for the Cause of Alzheimer’s Disease.- 21.1 Introduction.- 21.2 Important Facts about Alzheimer’s Disease.- 21.3 Current Hypotheses about Alzheimer’s Disease.- 21.4 Future Plans.- 22 Radio and Infrared Spectroscopy of Interstellar Molecules.- 22.1 History.- 22.2 Techniques.- 22.3 Application to Star Formation and Interstellar Chemistry.- 22.4 Observations and Interpretation in Orion IRc2 and GL2591.- 22.5 Future Prospects.- 22.6 Acknowledgments.- 23 Lessons Learned.- 23.1 Introduction.- 23.2 Lessons about Physics.- 23.3 Scientific Curiosity.- 23.4 Simplicity of Approach.- 23.5 Quality in All Endeavors.- 23.6 Lessons about Leadership.- 23.7 Lessons about Life.- 23.8 Conclusions.- 24 Infrared Spectroscopy of Jupiter in 1970 and in the 1990s.- 24.1 The Early 1970s.- 24.2 The Mid-1990s.- 24.2.1 H2 Dimers.- 24.2.2 Hot CO.- 24.3 Conclusion.- 25 The Galactic Center: Star Formation and Mass Distribution in the Central Parsec.- 25.1 Introducing the Phenomena.- 25.2 What Powers the Central Parsec?.- 25.3 Is SgrA* a Massive Black Hole?.- 25.4 Acknowledgments.- 26 Microwave Spectroscopy, the Maser, and Radio Astronomy: Charles Townes at Columbia.- 27 The Role of Radioactive 14C and 26Al in the Ionization of Circumstellar Envelopes.- 27.1 Introduction.- 27.2 Ionization.- 27.3 Radioactive Winds.- 27.4 Acknowledgments.- 28 The Clumpy Structure of Molecular Clouds.- 29 Spontaneous Emission Noise in Quantum Electronics.- 30 Possibility of Infrared Coronal Line Laser Emission in Seyfert Nuclei.- 30.1 Introduction.- 30.2 Stimulated Emission in Seyfert Nuclei.- 30.2.1 Population Inversions and Gain Lengths.- 30.2.2 Observational Tests.- 30.3 Conclusions.- 31 Concepts of Nuclear Magnetic Resonance in Quantum Optics.- 31.1 Introduction.- 31.2 The Resonance Equations.- 31.3 Optical Bloch-Maxwell Equations.- 31.4 Radiation Damping.- 31.5 NMR Maser and Optical Laser Threshold Condition.- 31.6 Optical Free-Induction Decay and the Photon Echo.- 31.7 Reaction Field Role During Linear Propagation.- 31.8 Two-pulse Photon Echo Phase-matching Condition.- 31.9 Principal Effects Common to NMR and Quantum Optics.- 31.10 Conclusion.- 31.11 Acknowledgment.- 32 Magnetic Resonance Imaging with Laser-polarized Noble Gases.- 33 Deterministic Order-Chaos Transition of Two Ions in a Paul Trap.- 33.1 Introduction.- 33.2 Equations of Motion.- 33.3 Experiments on Two Ions in a Paul Trap.- 33.4 Boundary Crisis.- 33.5 Numerical Studies of Transient Chaos.- 33.6 Conclusions.- 34 Infrared Emission and H2O Masers around Massive Black Holes in Galactic Nuclei.- 34.1 Introduction.- 34.2 The Physical Model.- 34.3 Results: Infrared Emission from Clouds.- 34.4 Results: H2O Megamasers and the Massive Black Hole in NGC 4258.- 34.5 Conclusion.- 34.6 Acknowledgments.- 35 Knowing Charlie: In the 1950s and Since.- 36 The SH Radical: Laboratory Detection of its $$J = \frac{3}{2} \leftarrow \frac{1}{2}$$ Rotational Transition.- 36.1 Introduction.- 36.2 Experimental.- 36.3 Theory and Analysis.- 36.4 Interstellar Implications.- 36.5 Acknowledgments.- 37 Charlie Townes at Brookhaven.- 37.1 Fortunate Meeting.- 37.2 How to Find a Thesis.- 37.3 Searching for a Resonance.- 37.4 A Theory to Match the Experiment.- 37.5 The Nucleus as a Non-invasive Structural Probe.- 37.6 Pleasant Memories.- 38 Classical Theory of Measurement: A Big Step Towards the Quantum Theory of Measurement.- 38.1 Introduction.- 38.1.1 De Broglie.- 38.2 Outline of Method.- 38.3 Discussion of the Measurement Process.- 38.4 Computational Details.- 38.5 Results.- 38.6 Toward a Quantum Theory.- 39 The Physics of Nerve Excitation.- 40 The Future of Science Education.- 40.1 Preamble: The Influence of Science and Technology.- 40.2 Science Education.- 40.3 Scientific Literacy.- 40.4 Action Plan.- 41 Noncoherent Feedback in Space Masers and Stellar Lasers.- 41.1 From Quantum Physics to Quantum Electronics.- 41.2 Noncoherent and Nonresonant Scattering Feedback.- 41.3 Space Masers with Scattering Feedback.- 41.4 Stellar Lasers with a Resonance Scattering Feedback.- 41.5 Conclusions and Outlook.- 42 Application of Millisecond Pulsar Timing to the Long-term Stability of Clock Ensembles.- 42.1 Introduction.- 42.2 Terrestrial Clocks.- 42.3 Global Time Transfer.- 42.4 Terrestrial Timescales and the BIPM.- 42.5 The Techniques of Pulsar Timing.- 42.6 Stability of Pulsar Time Standards.- 42.7 Acknowledgments.- 43 Some Security Implications of Growing Electricity Demand for the Use of Nuclear Power in East Asia.- 43.1 The Global Context.- 43.2 Growth in Nuclear Power.- 43.3 Some Problems With International Implications.- 43.4 What Arrangements Will Be Needed?.- 43.5 Acknowledgments.- 44 Dynamic Control of the Photon Statistics in the Micromaser and Laser.- 44.1 Introduction.- 44.2 Master Equation for the Photon Distribution.- 44.2.1 Micromaser.- 44.2.2 Laser.- 44.3 Transient and Steady-State Photon Statistics.- 44.3.1 Micromaser.- 44.3.2 Laser.- 44.4 Acknowledgments.- 45 Sgr A* — A Starving Black Hole?.- 45.1 The Early Days.- 45.2 From the Nuclear Bulge to the Circumnuclear Disk.- 45.3 The Central Cavity, its Morphology and Luminosity.- 45.4 A Summary of Recent Observations of Sgr A*.- 45.4.1 The Radio through MIR Source Characteristics: Spectrum and Morphology.- 45.4.2 The NIR through X-ray Source Characteristics.- 45.5 The Nature of Sgr A*.- 45.5.1 The Radio Spectrum above 1 GHz.- 45.5.2 The Low-frequency Cut-off at ? < 1 GHz.- 45.5.3 The Accretion Disk around Sgr A*.- 45.6 Summary and Conclusions.- 46 Infrared Semiconductor Laser by Means of J x H Force Excitation of Electrons and Holes.- 46.1 Introduction.- 46.2 Principle of Lasing Action.- 46.3 Characteristics of the Emission.- 46.4 Conclusions.- 46.5 Acknowledgments.- 47 From Laser Beam Filamentation to Optical Solitons: The Influence of C. H. Townes on the Development of Modern Nonlinear Optics.- 48 Industrial Research in Today’s World.- 49 Far-infrared Imaging of the HII Region-Molecular Cloud Complex W51A with a Balloon-borne Telescope.- 49.1 Introduction.- 49.2 The HII Region—Molecular Cloud Complex W51.- 49.3 Instrumentation.- 49.4 Balloon Flight MIL 1.- 49.5 Calibration on Saturn.- 49.6 Imaging and Radiometry of W51A.- 49.6.1 Intensity Maps.- 46.6.2 Dust Emission Spectrum.- 49.6.3 Cloud Mass and Luminosity.- 49.6.4 Determination of Temperature and Optical Depth.- 49.7 Conclusion.- 49.8 Acknowledgments.- 50 Charles Townes: The Scientist and the Person.- 51 Neutron Spin Reorientation Experiments.- 51.1 Introduction.- 51.2 Neutron Sources.- 51.3 Reflection, Transport Polarization and Trapping of Neutrons.- 51.4 Neutron Magnetic Moment.- 51.5 Neutron Electric Dipole Moment.- 51.6 Dressed Neutrons.- 51.7 Berry Phase.- 51.8 Detection of Small Velocity Changes.- 51.9 Parity Non-conserving Spin Rotations.- 52 An Appreciative Response to Townes on Science and Religion.- 52.1 Introduction.- 52.2 Similarities Between Science and Religion.- 52.3 The Broader Context of Townes’s Claims.- 52.4 Looking Ahead.- 53 The Academic Ivory Tower Under Siege.- 53.1 The Crisis of Science and Society.- 53.2 The Responsibility of Scientists.- 53.3 Opportunities for Change.- 54 The Correlated Spontaneous Emission Maser Gyroscope.- 54.1 Acknowledgments.- 55 Astronomical, Atmospheric, and Wavefront Studies with a Submillimeter-wavelength Interferometer.- 55.1 Introduction.- 55.2 The Interferometer.- 55.3 Spectroscopy.- 55.3.1 The Orion Molecular Cloud Core.- 55.3.2 Planetary Spectroscopy.- 55.3.3 Atmospheric Spectroscopy.- 56 Theory of an Optical Subharmonic Generator.- 56.1 Introduction.- 56.2 Steady-State Operation.- 56.3 Build-up of Subharmonic Oscillation.- 56.4 Locking Condition.- 56.5 Conclusion.- 57 Hydrogen Masers and Lasers in Space.- 57.1 Introduction.- 57.2 Population Inversions and Masing in Atomic Hydrogen.- 57.3 Hydrogen Lasers.- 57.4 “Dasars”.- 57.5 Is MWC349 Unique?.- 57.6 Notes added in proof.- 57.7 Acknowledgments.- 58 Beyond the South Pole.- 58.1 Why Antarctica?.- 58.2 South Pole Station.- 58.3 Other High Plateau Sites.- 58.4 The Automated Geophysical Observatory.- 58.5 The AASTO.- 58.5.1 Near-infrared Sky Monitor.- 58.5.2 Mid-infrared Transmission and Sky Brightness Monitor.- 58.5.3 UV/Visible Sky Monitor.- 58.5.4 Future Plans.- 58.6 Acknowledgments.- 59 Townes and Nonlinear Optics.- 59.1 Note.- 60 Spectral Observations of the Molecular Cloud Orion S.- 60.1 Introduction.- 60.2 Observations.- 60.3 Analysis.- 60.4 Summary.- 60.5 Acknowledgments.- 60.6 Concluding Personal Remarks (by Ed Sutton).- 61 A Visit to America.- 62 Review of Some Photothermal Effects.- 62.1 Introduction.- 62.2 The Thin Thermal Lens.- 62.3 Uses for Absorption Measurement.- 62.4 Longer and Shorter Cells: Thermal Self-focusing.- 62.5 Higher Power Effects.- 62.6 Conclusion.- 63 Dark Matter and Faint Galactic Halo Light.- 63.1 Introduction.- 63.2 The Intensity of Scattered Light.- 63.3 Discussion.- 63.4 Summary.- 63.5 Acknowledgments.- 64 Optical Pump-Probe Experiments and the Higgs Field.- 64.1 Acknowledgments.