Markov Models for Pattern Recognition

From Theory to Applications

Specificaties
Paperback, blz. | Engels
Springer London | 2e druk, 2016
ISBN13: 9781447171331
Rubricering
Springer London 2e druk, 2016 9781447171331
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.

Specificaties

ISBN13:9781447171331
Taal:Engels
Bindwijze:paperback
Uitgever:Springer London
Druk:2

Inhoudsopgave

<p>Introduction</p><p>Application Areas</p><p>Part I: Theory</p><p>Foundations of Mathematical Statistics</p><p>Vector Quantization and Mixture Estimation</p><p>Hidden Markov Models</p><p>n-Gram Models</p><p>Part II: Practice</p><p>Computations with Probabilities</p><p>Configuration of Hidden Markov Models</p><p>Robust Parameter Estimation</p><p>Efficient Model Evaluation</p><p>Model Adaptation</p><p>Integrated Search Methods</p><p>Part III: Systems</p><p>Speech Recognition</p><p>Handwriting Recognition</p><p>Analysis of Biological Sequences</p>

Rubrieken

    Personen

      Trefwoorden

        Markov Models for Pattern Recognition