Advanced Surfaces for Stem Cell Research

Specificaties
Gebonden, 480 blz. | Engels
John Wiley & Sons | e druk, 2016
ISBN13: 9781119242505
Rubricering
John Wiley & Sons e druk, 2016 9781119242505
Onderdeel van serie Advanced Material Series
Verwachte levertijd ongeveer 9 werkdagen

Specificaties

ISBN13:9781119242505
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:480

Inhoudsopgave

<p>Preface xv</p>
<p>1 Extracellular Matrix Proteins for Stem Cell Fate 1<br /> Bet&uuml;l &Ccedil;elebi–Saltik</p>
<p>1.1 Human Stem Cells, Sources, and Niches 2</p>
<p>1.2 Role of Extrinsic and Intrinsic Factors 5</p>
<p>1.2.1 Shape 5</p>
<p>1.2.2 Topography Regulates Cell Fate 6</p>
<p>1.2.3 Stiffness and Stress 6</p>
<p>1.2.4 Integrins 7</p>
<p>1.2.5 Signaling via Integrins 9</p>
<p>1.3 Extracellular Matrix of the Mesenchyme: Human Bone Marrow 11</p>
<p>1.4 Biomimetic Peptides as Extracellular Matrix Proteins 13</p>
<p>References 15</p>
<p>2 The Superficial Mechanical and Physical Properties of Matrix Microenvironment as Stem Cell Fate Regulator 23<br /> Mohsen Shahrousvand, Gity Mir Mohamad Sadeghi and Ali Salimi</p>
<p>2.1 Introduction 24</p>
<p>2.2 Fabrication of the Microenvironments with Different Properties in Surfaces 25</p>
<p>2.3 Effects of Surface Topography on Stem Cell Behaviors 28</p>
<p>2.4 Role of Substrate Stiffness and Elasticity of Matrix on Cell Culture 31</p>
<p>2.5 Stem Cell Fate Induced by Matrix Stiffness and Its Mechanism 32</p>
<p>2.6 Competition/Compliance between Matrix Stiffness and Other Signals and Their Effect on Stem Cells Fate 33</p>
<p>2.7 Effects of Matrix Stiffness on Stem Cells in Two Dimensions versus Three Dimensions 34</p>
<p>2.8 Effects of External Mechanical Cues on Stem Cell Fate from Surface Interactions Perspective 34</p>
<p>2.9 Conclusions 35</p>
<p>Acknowledgments 36</p>
<p>References 36</p>
<p>3 Effects of Mechanotransduction on Stem Cell Behavior 43<br /> Bahar Bilgen and Sedat Odabas</p>
<p>3.1 Introduction 43</p>
<p>3.2 The Concept of Mechanotransduction 45</p>
<p>3.3 The Mechanical Cues of Cell Differentiation and Tissue Formation on the Basis of Mechanotransduction 46</p>
<p>3.4 Mechanotransduction via External Forces 47</p>
<p>3.4.1 Mechanotransduction via Bioreactors 48</p>
<p>3.4.2 Mechanotransduction via Particle–based Systems 51</p>
<p>3.4.3 Mechanotransduction via Other External Forces 53</p>
<p>3.5 Mechanotransduction via Bioinspired Materials 54</p>
<p>3.6 Future Remarks and Conclusion 54</p>
<p>Declaration of Interest 55</p>
<p>References 55</p>
<p>4 Modulation of Stem Cells Behavior Through Bioactive Surfaces 65<br /> Eduardo D. Gomes, Rita C. Assun&ccedil;&atilde;o–Silva, Nuno Sousax, Nuno A. Silva and Ant&oacute;nio J. Salgado</p>
<p>4.1 Lithography 66</p>
<p>4.2 Micro and Nanopatterning 70</p>
<p>4.3 Microfluidics 71</p>
<p>4.4 Electrospinning 71</p>
<p>4.5 Bottom–up/Top–down&nbsp; Approaches 74</p>
<p>4.6 Substrates Chemical Modifications 75</p>
<p>4.6.1 Biomolecules Coatings 76</p>
<p>4.6.2 Peptide Grafting 77</p>
<p>4.7 Conclusion 78</p>
<p>References 79</p>
<p>Contents vii</p>
<p>5 Influence of Controlled Micro– and Nanoengineered Environments on Stem Cell Fate 85<br /> Anna Lagunas, David Caballero and Josep Samitier</p>
<p>5.1 Introduction to Engineered Environments for the Control of Stem Cell Differentiation 86</p>
<p>5.1.1 Stem Cells Niche In Vivo: A Highly Dynamic and Complex Environment 86</p>
<p>5.1.2 Mimicking the Stem Cells Niche In Vitro: Engineered Biomaterials 88</p>
<p>5.2 Mechanoregulation of Stem Cell Fate 89</p>
<p>5.2.1 From In Vivo to In Vitro: Influence of the Mechanical Environment on Stem Cell Fate 89</p>
<p>5.2.2 Regulation of Stem Cell Fate by Surface Roughness 90</p>
<p>5.2.3 Control of Stem Cell Differentiation by Micro– and Nanotopographic Surfaces 92</p>
<p>5.2.4 Physical Gradients for Regulating Stem Cell Fate 96</p>
<p>5.3 Controlled Surface Immobilization of Biochemical Stimuli for Stem Cell Differentiation 100</p>
<p>5.3.1 Micro– and Nanopatterned Surfaces: Effect of Geometrical Constraint and Ligand Presentation at the Nanoscale 100</p>
<p>5.3.2 Biochemical Gradients for Stem Cell Differentiation 107</p>
<p>5.4 Three–dimensional Micro– and Nanoengineered Environments for Stem Cell Differentiation 112</p>
<p>5.4.1 Three–dimensional Mechanoregulation of Stem Cell Fate 113</p>
<p>5.4.2 Three–dimensional Biochemical Patterns for Stem Cell Differentiation 119</p>
<p>5.5 Conclusions and Future Perspectives 122</p>
<p>References 122</p>
<p>6 Recent Advances in Nanostructured Polymeric Surface: Challenges and Frontiers in Stem Cells 141<br /> Ilaria Armentano, Samantha Mattioli, Francesco Morena, Chiara Argentati, Sabata Martino, Luigi Torre and Jos&egrave; Maria Kenny</p>
<p>6.1 Introduction 142</p>
<p>6.2 Nanostructured Surface 144</p>
<p>6.3 Stem Cell 146</p>
<p>6.4 Stem Cell/Surface Interaction 147</p>
<p>6.5 Microscopic Techniques Used in Estimating Stem Cell/Surface 148</p>
<p>6.5.1 Fluorescence Microscopy 148</p>
<p>6.5.2 Electron Microscopy 149</p>
<p>6.5.3 Atomic Force Microscopy 153</p>
<p>6.5.3.1 Instrument 154</p>
<p>6.5.3.2 Cell Nanomechanical Motion 156</p>
<p>6.5.3.3 Mechanical Properties 156</p>
<p>6.6 Conclusions and Future Perspectives 158</p>
<p>References 158</p>
<p>7 Laser Surface Modification Techniques and Stem Cells&nbsp; Applications 165<br /> &Ccedil;a r Kaan Akkan</p>
<p>7.1 Introduction 166</p>
<p>7.2 Fundamental Laser Optics for Surface Structuring 166</p>
<p>7.2.1 Definitive Facts for Laser Surface Structuring 167</p>
<p>7.2.1.1 Absorptivity and Reflectivity of the Laser Beam by the Material Surface 167</p>
<p>7.2.1.2 Effect of the Incoming Laser Light Polarization 168</p>
<p>7.2.1.3 Operation Mode of the Laser 169</p>
<p>7.2.1.4 Beam Quality Factor 170</p>
<p>7.2.1.5 Laser Pulse Energy/Power 171</p>
<p>7.2.2 Ablation by Laser Pulses 172</p>
<p>7.2.2.1 Focusing the Laser Beam 172</p>
<p>7.2.2.2 Ablation Regime 173</p>
<p>7.3 Methods for Laser Surface Structuring 174</p>
<p>7.3.1 Physical Surface Modifications by Lasers 174</p>
<p>7.3.1.1 Direct Structuring 175</p>
<p>7.3.1.2 Beam Shaping Optics 177</p>
<p>7.3.1.3 Direct Laser Interference Patterning 180</p>
<p>7.3.2 Chemical Surface Modification by Lasers 181</p>
<p>7.3.2.1 Pulsed Laser Deposition 181</p>
<p>7.3.2.2 Laser Surface Alloying 184</p>
<p>7.3.2.3 Laser Surface Oxidation and Nitriding 186</p>
<p>7.4 Stem Cells and Laser–Modified Surfaces 187</p>
<p>7.5 Conclusions 191</p>
<p>References 192</p>
<p>8 Plasma Polymer Deposition: A Versatile Tool for Stem Cell Research 197<br /> M. N. Macgregor–Ramiasa and K. Vasilev</p>
<p>8.1 Introduction 197</p>
<p>8.2 The Principle and Physics of Plasma Methods for Surface Modification 199</p>
<p>8.2.1 Plasma Sputtering, Etching an Implantation 200</p>
<p>8.2.2 Plasma Polymer Deposition 201</p>
<p>8.3 Surface Properties Influencing Stem Cell Fate 202</p>
<p>8.3.1 Plasma Methods for Tailored Surface Chemistry 203</p>
<p>8.3.1.1 Oxygen–rich Surfaces 204</p>
<p>8.3.1.2 Nitrogen–rich Surfaces 208</p>
<p>8.3.1.3 Systematic Studies and Copolymers 210</p>
<p>8.3.2 Plasma for Surface Topography 211</p>
<p>8.3.3 Plasma for Surface Stiffness 213</p>
<p>8.3.4 Plasma for Gradient Substrata 215</p>
<p>8.3.5 Plasma and 3D Scaffolds 218</p>
<p>8.4 New Trends and Outlook 219</p>
<p>8.5 Conclusions 219</p>
<p>References 220</p>
<p>9 Three–dimensional Printing Approaches for the Treatment of Critical–sized Bone Defects 231<br /> Sara Salehi, Bilal A. Naved and Warren L. Grayson</p>
<p>9.1 Background 232</p>
<p>9.1.1 Treatment Approaches for Critical–sized Bone Defects 232</p>
<p>9.1.2 History of the Application of 3D Printing to Medicine and Biology 233</p>
<p>9.2 Overview of 3D Printing Technologies 234</p>
<p>9.2.1 Laser–based Technologies 235</p>
<p>9.2.1.1 Stereolithography 235</p>
<p>9.2.1.2 Selective Laser Sintering 236</p>
<p>9.2.1.3 Selective Laser Melting 236</p>
<p>9.2.1.4 Electron Beam Melting 237</p>
<p>9.2.1.5 Two–photon Polymerization 237</p>
<p>9.2.2 Extrusion–based Technologies 238</p>
<p>9.2.2.1 Fused Deposition Modeling 238</p>
<p>9.2.2.2 Material Jetting 238</p>
<p>9.2.3 Ink–based Technologies 239</p>
<p>9.2.3.1 Inkjet 3D Printing 239</p>
<p>9.2.3.2 Aerosol Jet Printing 239</p>
<p>9.3 Surgical Guides and Models for Bone Reconstruction 240</p>
<p>9.3.1 Laser–based Surgical Guides 240</p>
<p>9.3.2 Extrusion–based Surgical Guides 240</p>
<p>9.3.3 Ink–based Surgical Guides 241</p>
<p>9.4 Three–dimensionally Printed Implants for Bone Substitution 242</p>
<p>9.4.1 Laser–based Technologies for Metallic Bone Implants 244</p>
<p>9.4.2 Extrusion–based Technologies for Bone Implants 245</p>
<p>9.4.3 Ink–based Technologies for Bone Implants 246</p>
<p>9.5 Scaffolds for Bone Regeneration 246</p>
<p>9.5.1 Laser–based Printing for Regenerative Scaffolds 247</p>
<p>9.5.2 Extrusion–based Printing for Regenerative Scaffolds 247</p>
<p>9.5.3 Ink–based Printing for Regenerative Scaffolds 249</p>
<p>9.5.4 Pre– and Postprocessing Techniques 250</p>
<p>9.5.4.1 Preprocessing 250</p>
<p>9.5.4.2 Postprocessing: Sintering 256</p>
<p>9.5.4.3 Postprocessing: Functionalization 256</p>
<p>9.6 Bioprinting 257</p>
<p>9.7 Conclusion 262</p>
<p>List of Abbreviation 263</p>
<p>References 264</p>
<p>10 Application of Bioreactor Concept and Modeling Techniques to Bone Regeneration and Augmentation Treatments 277<br /> Oscar A. Decc&oacute; and J&eacute;sica I. Zuchuat</p>
<p>10.1 Bone Tissue Regeneration 278</p>
<p>10.1.1 Proinflammatory Cytokines 279</p>
<p>10.1.2 Transforming Growth Factor Beta 279</p>
<p>10.1.3 Angiogenesis in Regeneration 280</p>
<p>10.2 Actual Therapeutic Strategies and Concepts to</p>
<p>Obtain an Optimal Bone Quality and Quantity 281</p>
<p>10.2.1 Guided Bone Regeneration Based on Cells 282</p>
<p>10.2.1.1 Embryonic Stem Cells 282</p>
<p>10.2.1.2 Adult Stem Cells 282</p>
<p>10.2.1.3 Mesenchymal Stem Cells 283</p>
<p>10.2.2 Guided Bone Regeneration Based on PRP and Growth Factors 284</p>
<p>10.2.2.1 Bone Morphogenetic Proteins 287</p>
<p>10.2.3 Guided Bone Regeneration Based on Barrier Membranes 288</p>
<p>10.2.4 Guided Bone Regeneration Based on Scaffolds 290</p>
<p>10.3 Bioreactors Employed for Tissue Engineering in Guided Bone Regeneration 291</p>
<p>10.4 Bioreactor Concept in Guided Bone Regeneration and Tissue Engineering: In Vivo Application 294</p>
<p>10.5 New Multidisciplinary Approaches Intended to Improve and Accelerate the Treatment of Injured and/or Diseased Bone 303</p>
<p>10.5.1 Application of Bioreactor in Dentistry: Therapies for the Treatment of Maxillary Bone Defects 304</p>
<p>10.5.2 Application of Bioreactor in Cases of Osteoporosis 307</p>
<p>10.6 Computational Modeling: An Effective Tool to Predict Bone Ingrowth 310</p>
<p>References 311</p>
<p>11 Stem Cell–based Medicinal Products: Regulatory Perspectives 321<br /> DenizOzdil and Halil Murat Aydin</p>
<p>11.1 Introduction 321</p>
<p>11.2 Defining Stem Cell–based Medicinal Products 323</p>
<p>11.3 Regional Regulatory Issues for Stem Cell Products 326</p>
<p>11.4 Regulatory Systems for Stem Cell–based Technologies 327</p>
<p>11.4.1 The US Regulatory System 328</p>
<p>11.5 Stem Cell Technologies: The European</p>
<p>Regulatory System 336</p>
<p>References 340</p>
<p>12 Substrates and Surfaces for Control of Pluripotent Stem Cell Fate and Function 341<br /> Akshaya Srinivasan, Yi–Chin Toh, Xian Jun Loh and Wei Seong Toh</p>
<p>12.1 Introduction 342</p>
<p>12.2 Pluripotent Stem Cells 342</p>
<p>12.3 Substrates for Maintenance of Self–renewal and Pluripotency of PSCs 344</p>
<p>12.3.1 Cellular Substrates 344</p>
<p>12.3.2 Acellular Substrates 345</p>
<p>12.3.2.1 Biological Matrices 345</p>
<p>12.3.2.2 ECM Components 348</p>
<p>12.3.2.3 Decellularized Matrices 350</p>
<p>12.3.2.4 Cell Adhesion Molecules 351</p>
<p>12.3.2.5 Synthetic Substrates 352</p>
<p>12.4 Substrates for Promoting Differentiation of PSCs 355</p>
<p>12.4.1 Cellular Substrates 355</p>
<p>12.4.2 Acellular Substrates 356</p>
<p>12.4.2.1 Biological Matrices 356</p>
<p>12.4.2.2 ECM Components 358</p>
<p>12.4.2.3 Decellularized Matrices 362</p>
<p>12.4.2.4 Cell Adhesion Molecules 363</p>
<p>12.4.2.5 Synthetic Substrates 363</p>
<p>12.5 Conclusions 366</p>
<p>Acknowledgments 367</p>
<p>References 367</p>
<p>13 Silk as a Natural Biopolymer for Tissue Engineering 379<br /> Ay e Ak Can and Gamze B&ouml;l&uuml;kba i Ate </p>
<p>13.1 Introduction 380</p>
<p>13.2 SF as a Biomaterial 383</p>
<p>13.2.1 Fibroin Hydrogels and Sponges 384</p>
<p>13.2.2 Fibroin Films and Membranes 386</p>
<p>13.2.3 Nonwoven and Woven Silk Scaffolds 386</p>
<p>13.2.4 Silk Fibroin as a Bioactive Molecule Delivery 386</p>
<p>13.3 Biomedical Applications of Silk–based Biomaterials 387</p>
<p>13.3.1 Bone Tissue Engineering 387</p>
<p>13.3.2 Cartilage Tissue Engineering 389</p>
<p>13.3.3 Ligament and Tendon Tissue Engineering 391</p>
<p>13.3.4 Cardiovascular Tissue Engineering 391</p>
<p>13.3.5 Skin Tissue Engineering 393</p>
<p>13.3.6 Other Applications of Silk Fibroin 393</p>
<p>13.4 Conclusion and Future Directions 393</p>
<p>References 394</p>
<p>14 Applications of Biopolymer–based, Surface–modified Devices in Transplant Medicine and Tissue Engineering 399<br /> Ashim Malhotra, Gulnaz Javan and Shivani Soni</p>
<p>14.1 Introduction to Cardiovascular Disease 400</p>
<p>14.2 Need Assessment for Biopolymer–based Devices in Cardiovascular Therapeutics 400</p>
<p>14.3 Emergence of Surface Modification Applications in Cardiovascular Sciences: A Historical Perspective 401</p>
<p>14.4 Nitric Oxide Producing Biosurface Modification 403</p>
<p>14.5 Surface Modification by Extracellular Matrix Protein Adherence 404</p>
<p>14.6 The Role of Surface Modification in the Construction of Cardiac Prostheses 405</p>
<p>14.7 Biopolymer–based Surface Modification of Materials Used in Bone Reconstruction 406</p>
<p>14.8 The Use of Biopolymers in Nanotechnology 409</p>
<p>14.8.1 Protein Nanoparticles 410</p>
<p>14.8.1.1 Albumin–based Nanoparticles and Surface Modification 411</p>
<p>14.8.1.2 Collagen–based Nanoparticles and Surface Modification 412</p>
<p>14.8.1.3 Gelatin–based Nanoparticle Systems 413</p>
<p>14.8.2 Polysaccharide–based Nanoparticle Systems 413</p>
<p>14.8.2.1 The Use of Alginate for Surface Modifications 413</p>
<p>14.8.2.2 The Use of Chitosan–based Nanoparticles and Chitosan–based Surface Modification 414</p>
<p>14.8.2.3 The Use of Chitin–based Nanoparticles and Chitin–based Surface Modification 416</p>
<p>14.8.2.4 The Use of Cellulose–based Nanoparticles and Cellulose–based Surface Modification 417</p>
<p>References 418</p>
<p>15 Stem Cell Behavior on Microenvironment Mimicked Surfaces&nbsp; 423<br /> M. &Ouml;zgen &Ouml;zt&uuml;rk &Ouml;ncel and Bora Garipcan</p>
<p>15.1 Introduction 424</p>
<p>15.2 Stem Cells 425</p>
<p>15.2.1 Definition and Types 425</p>
<p>15.2.1.1 Embryonic Stem Cells 426</p>
<p>15.2.1.2 Adult Stem Cells 426</p>
<p>15.2.1.3 Reprogramming and Induced Pluripotent Stem Cells 427</p>
<p>15.2.2 Stem Cell Niche 427</p>
<p>15.3 Stem Cells: Microenvironment Interactions 428</p>
<p>15.3.1 Extracellular Matrix 429</p>
<p>15.3.2 Signaling Factors 429</p>
<p>15.3.3 Physicochemical Composition 430</p>
<p>15.3.4 Mechanical Properties 430</p>
<p>15.3.5 Cell Cell Interactions 431</p>
<p>15.4 Biomaterials as Stem Cell Microenvironments 431</p>
<p>15.4.1 Surface Chemistry 431</p>
<p>15.4.2 Surface Hydrophilicity and Hydrophobicity 434</p>
<p>15.4.3 Substrate Stiffness 435</p>
<p>15.4.4 Surface Topography 435</p>
<p>15.5 Biomimicked and Bioinspired Approaches 436</p>
<p>15.5.1 Bone Tissue Regeneration 439</p>
<p>15.5.2 Cartilage Tissue Regeneration 440</p>
<p>15.5.3 Cardiac Tissue Regeneration 441</p>
<p>15.6 Conclusion 442</p>
<p>References 442</p>

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Advanced Surfaces for Stem Cell Research