Introduction to Polymer Viscoelasticity, Fourth Edition

Specificaties
Gebonden, 384 blz. | Engels
John Wiley & Sons | e druk, 2018
ISBN13: 9781119181804
Rubricering
John Wiley & Sons e druk, 2018 9781119181804
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Completely revised and updated, the fourth edition of this classic text continues to offer the reader a thorough understanding of viscoelastic behavior, essential for the proper utilization of polymers.

Explains principles, corresponding equations, and experimental methods with supporting real–life applications
Adds coverage of measurement techniques (nano–indentation, atomic force microscopy (AFM), and diffusing wave spectroscopy (DWS)), biopolymer viscoelasticity, and the relationship between mechanical polymer properties and viscoelastic functions
Has two new ections to address modern areas of viscoelastic measurement: large amplitude oscillatory shear (LAOS) and microrheology
Includes problems in the text and an Instructor s Manual (including solutions) available for adopting professors
Prior edition reviews: "The book is clear written and [is] appropriate for students in introductory undergraduate courses and for others wanting introduction to the fundamentals of the subject." (CHOICE, December 2005); "This book is invariably well written, logically organized and easy to follow...I highly recommend this book to anyone studying polymer viscoelasticity." (Polymer News, December 2005)

Specificaties

ISBN13:9781119181804
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:384

Inhoudsopgave

<p>Preface to the Fourth Edition</p>
<p>Preface to the Third Edition</p>
<p>Preface to the Second Edition</p>
<p>Preface to the First Edition</p>
<p>1. Introduction</p>
<p>PROBLEMS, 6</p>
<p>GENERAL REFERENCE TEXTS, 7</p>
<p>REFERENCES, 8</p>
<p>2. Phenomenological Treatment of Viscoelasticity</p>
<p>A. ELASTIC MODULUS, 9</p>
<p>B. TRANSIENT EXPERIMENTS, 21</p>
<p>C. DYNAMIC EXPERIMENTS, 25</p>
<p>1. Low–Strain Measurements, 25</p>
<p>2. Large Amplitude Oscillatory Shear (LAOS), 30</p>
<p>3. Microrheology, 34</p>
<p>D. BOLTZMANN SUPERPOSITION PRINCIPLE, 38</p>
<p>E. RELATIONSHIP BETWEEN THE CREEP COMPLIANCE AND THE STRESS RELAXATION MODULUS, 43</p>
<p>F. RELATIONSHIP BETWEEN STATIC AND DYNAMIC PROPERTIES, 44</p>
<p>APPENDIX 2–1. Connecting Creep Compliance and Stress Relaxation Modulus Using Laplace Transforms, 45</p>
<p>APPENDIX 2–2. Borel s Theorem, 48</p>
<p>APPENDIX 2–3. Geometries for the Measurement of Viscoelastic Functions, 49</p>
<p>1. Linear Motion Geometries, 49</p>
<p>2. Rotational Motion Geometries, 53</p>
<p>PROBLEMS, 57</p>
<p>REFERENCES, 64</p>
<p>3. Viscoelastic Models</p>
<p>A. MECHANICAL ELEMENTS, 66</p>
<p>1. Maxwell Model, 68</p>
<p>2. Voigt Model, 74</p>
<p>3. Generalized Maxwell Model, 76</p>
<p>4. Voigt–Kelvin model, 79</p>
<p>B. DISTRIBUTIONS OF RELAXATION AND RETARDATION TIMES, 81</p>
<p>C. MOLECULAR THEORIES THE ROUSE MODEL, 84</p>
<p>D. APPLICATION OF FLEXIBLE–CHAIN MODELS TO SOLUTIONS, 93</p>
<p>E. THE ZIMM MODIFICATION, 94</p>
<p>F. EXTENSION TO BULK POLYMER, 96</p>
<p>G. REPTATION, 108</p>
<p>APPENDIX 3–1: MANIPULATION OF THE ROUSE MATRIX, 112</p>
<p>PROBLEMS, 117</p>
<p>REFERENCES, 123</p>
<p>4. Time Temperature Correspondence</p>
<p>A. FOUR REGIONS OF VISCOELASTIC BEHAVIOR, 125</p>
<p>B. TIME TEMPERATURE SUPERPOSITION, 133</p>
<p>C. MASTER CURVES, 136</p>
<p>D. THE WLF EQUATION, 136</p>
<p>E. MOLECULAR INTERPRETATION OF VISCOELASTIC RESPONSE, 143</p>
<p>PROBLEMS, 144</p>
<p>REFERENCES, 149</p>
<p>5. Transitions and Relaxation in Amorphous Polymers</p>
<p>A. PHENOMENOLOGY OF THE GLASS TRANSITION, 150</p>
<p>B. THEORIES OF THE GLASS TRANSITION, 155</p>
<p>1. Free–Volume Theory, 155</p>
<p>2. Thermodynamic Theory, 158</p>
<p>3. Kinetic Theories, 164</p>
<p>C. STRUCTURAL PARAMETERS AFFECTING THE GLASS TRANSITION, 166</p>
<p>D. RELAXATIONS IN THE GLASSY STATE, 172</p>
<p>E. RELAXATION PROCESSES IN NETWORKS, 176</p>
<p>1. Physical Relaxation, 176</p>
<p>2. Chemical Processes, 177</p>
<p>F. BIOPOLYMER VISCOELASTICITY, 180</p>
<p>1. Biopolymer Sources, 180</p>
<p>2. Humidity Control, 181</p>
<p>3. Examples of Biopolymer Viscoelastic Response, 183</p>
<p>PROBLEMS, 189</p>
<p>REFERENCES, 196</p>
<p>6. Elasticity of Rubbery Networks</p>
<p>A. THERMODYNAMIC TREATMENT, 199</p>
<p>B. STATISTICAL TREATMENT, 205</p>
<p>1. Derivation, 205</p>
<p>2. Energy Contribution, 216</p>
<p>C. PHENOMENOLOGICAL TREATMENT, 220</p>
<p>D. FACTORS AFFECTING RUBBER ELASTICITY, 224</p>
<p>1. Effect of Degree of Crosslinking, 224</p>
<p>2. Effect of Swelling, 226</p>
<p>3. Effect of Fillers, 229</p>
<p>4. Effect of Strain–Induced Crystallization, 232</p>
<p>APPENDIX 6–1. Statistics of a Polymer Chain, 234</p>
<p>APPENDIX 6–2. Equation of State for a Polymer Chain, 240</p>
<p>PROBLEMS, 242</p>
<p>REFERENCES, 246</p>
<p>7. Dielectric and NMR Methods</p>
<p>A. DIELECTRIC METHODS, 249</p>
<p>1. Phenomenology, 250</p>
<p>2. Molecular Interpretation of Dielectric Constant, 257</p>
<p>3. Interfacial Polarization, 264</p>
<p>4. Application to Polymers, 265</p>
<p>5. Experimental Methods, 268</p>
<p>6. Application of Dielectric Relaxation to Poly (methyl methacrylate), 272</p>
<p>7. Comparisons between Mechanical and Dielectric Relaxation for Polymers, 273</p>
<p>B. NUCLEAR MAGNETIC RESONANCE METHODS, 274</p>
<p>PROBLEMS, 280</p>
<p>REFERENCES, 282</p>
<p>Answers to Selected Problems</p>
<p>CHAPTER 2, 284</p>
<p>CHAPTER 3, 296</p>
<p>CHAPTER 4, 304</p>
<p>CHAPTER 5, 308</p>
<p>CHAPTER 6, 312</p>
<p>CHAPTER 7, 320</p>
<p>List of Major Symbols</p>
<p>List of Files on Website</p>
<p>Author Index</p>
<p>Subject Index</p>

Rubrieken

    Personen

      Trefwoorden

        Introduction to Polymer Viscoelasticity, Fourth Edition