Composite Materials for Food Packaging

Innovative and Environmentally Sound Strategies

Specificaties
Gebonden, 462 blz. | Engels
John Wiley & Sons | e druk, 2018
ISBN13: 9781119160205
Rubricering
John Wiley & Sons e druk, 2018 9781119160205
Onderdeel van serie Insight to Modern Food Science
Verwachte levertijd ongeveer 9 werkdagen

Specificaties

ISBN13:9781119160205
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:462

Inhoudsopgave

<p>Preface xv</p>
<p>1 Montmorillonite Composite Materials and Food Packaging 1<br />Aris E. Giannakas and Areti A. Leontiou</p>
<p>1.1 Introduction 1</p>
<p>1.2 Polymer/MMT–Based Packaging Materials 6</p>
<p>1.2.1 Polyethylene(PE)/MMT–Based Packaging Materials 8</p>
<p>1.2.2 Polystyrene(PS)/MMT–Based Packaging Materials 11</p>
<p>1.2.3 Polypropylene (PP)/MMT–Based Composites for Food Packaging 13</p>
<p>1.2.4 Poly(ethylene)terephthalate(PET)/MMT–Based Packaging Materials 16</p>
<p>1.3 Biopolymers and Protein/MMT–Based Packaging Materials 18</p>
<p>1.3.1 Starch/MMT–Based Packaging Materials 19</p>
<p>1.3.2 Cellulose/MMT–Based Packaging Materials 25</p>
<p>1.3.3 Chitosan/MMT Composite Materials 29</p>
<p>1.3.4 PLA/MMT–Based Packaging Materials 34</p>
<p>1.3.5 Protein /MMT–Based Packaging Materials 37</p>
<p>1.4 Ag+–Cu2+–Zn2+/MMT–Based Composites Packaging Materials 39</p>
<p>1.4.1 Ag+/MMT–Based Packaging Materials 40</p>
<p>1.4.2 Cu2+/MMT–Based Packaging Materials 42</p>
<p>1.4.3 Fe2+/MMT–Based Composites 44</p>
<p>1.5 Metal Oxide/MMT–Based Packaging Materials 45</p>
<p>1.6 Natural Antioxidants/MMT Composite Materials for Food Packaging 49</p>
<p>1.7 Enzyme/MMT–Based Composites Packaging Materials 56</p>
<p>1.8 Conclusion 60</p>
<p>References 61</p>
<p>2 Halloysite Containing Composites for Food Packaging Applications 73<br />Raluca Nicoleta Darie Ni and Cornelia Vasile</p>
<p>2.1 Halloysite 74</p>
<p>2.1.1 Molecular and Crystalline Structure 74</p>
<p>2.1.2 Properties 77</p>
<p>2.1.3 Surface Modification of HAL 78</p>
<p>2.1.3.1 Modification of the External Surface 79</p>
<p>2.1.3.2 Modification by Click Chemistry 80</p>
<p>2.2 Nanocomposites Containing HAL 80</p>
<p>2.2.1 HAL Containing Non–Degradable Synthetic Polymeric Nanocomposites for Food Packaging Applications 81</p>
<p>2.2.1.1 Processing Strategies 81</p>
<p>2.2.1.2 Polyolefins/HNTs Nanocomposites 83</p>
<p>2.2.1.3 Polystyrene/HNTs Nanocomposites 94</p>
<p>2.2.1.4 Polyamide/HNTs Nanocomposites 95</p>
<p>2.2.1.5 PET/HNTs Nanocomposites 97</p>
<p>2.2.1.6 Elastomers(Rubbers)/HNTs Nanocomposites 97</p>
<p>2.2.1.7 Epoxy/HNTs Nanocomposites 98</p>
<p>2.2.2 HAL–Containing Degradable Polymeric Bionanocomposites for Food Packaging 98</p>
<p>2.2.2.1 Preparation of HNT–Containing Degradable Nanocomposites 99</p>
<p>2.2.2.2 Properties of HNT–Containing Degradable Nanocomposites 101</p>
<p>2.2.2.3 Polyvinyl Alcohol (PVOH)/HNT 101</p>
<p>2.2.2.4 Polyalkanoates/HNT Nanocomposites 106</p>
<p>2.2.2.5 PLA/Halloysite Biocomposites 106</p>
<p>2.2.2.6 Polysaccharide–HNT Composites 107</p>
<p>2.2.2.7 Lignocellulose/Wood Fibers/HAL Clay Composites 109</p>
<p>2.2.2.8 Polysaccharides/HAL Clay Composites 110</p>
<p>2.2.2.9 Proteins/HNT Biocomposites 111</p>
<p>2.2.2.10 Natural Rubber/HNTs Composites 111</p>
<p>2.3 Conclusion 112</p>
<p>References 112</p>
<p>3 Silver Composite Materials and Food Packaging 123<br />Amalia I. Cano, Amparo Chiralt and Chelo Gonz&aacute;lez–Mart&iacute;nez</p>
<p>3.1 Silver and Silver Compounds as Active Agents 124</p>
<p>3.1.1 History and Background 124</p>
<p>3.1.2 Chemical Species of Silver 125</p>
<p>3.1.3 Silver in Polymeric Matrices for Food Packaging Purposes 130</p>
<p>3.1.3.1 Different Methodologies to Incorporate Silver and Silver Species into Packaging Materials 130</p>
<p>3.1.3.2 Functional Characterization of Silver–Enriched Packaging Materials 131</p>
<p>3.1.4 Current Legislation Applied to Silver Composite Materials Used for Food Packaging 144</p>
<p>3.2 Conclusions 144</p>
<p>References 145</p>
<p>4 Zinc Composite Materials and Food Packaging 153<br />R. Venkatesan, T. Thendral Thiyagu and N. Rajeswari</p>
<p>4.1 Introduction 153</p>
<p>4.2 Food Packaging 154</p>
<p>4.3 Polymers in Food Packaging 154</p>
<p>4.4 Nanotechnology 156</p>
<p>4.5 Nano–Fillers 156</p>
<p>4.6 Classification of Nano–fillers 157</p>
<p>4.7 ZnO Nanoparticles 157</p>
<p>4.7.1 Advantages of ZnO Nanoparticles 157</p>
<p>4.7.2 Limitations of ZnO Nanoparticles 158</p>
<p>4.8 Composites 159</p>
<p>4.8.1 Classification of Composites 159</p>
<p>4.8.1.1 Metal Matrix Composites 159</p>
<p>4.8.1.2 Ceramic Matrix Composites 159</p>
<p>4.8.1.3 Polymer Matrix Composites 159</p>
<p>4.8.2 Components of Composites 159</p>
<p>4.8.2.1 Matrix 159</p>
<p>4.8.2.2 Fillers 160</p>
<p>4.8.2.3 Nanocomposites 160</p>
<p>4.8.3 Preparation of Nanocomposites 161</p>
<p>4.8.3.1 Solution Casting 161</p>
<p>4.8.3.2 In Situ Polymerization 162</p>
<p>4.8.3.3 Melt Extrusion 162</p>
<p>4.8.4 Properties of Nanocomposites 163</p>
<p>4.8.4.1 Mechanical Properties 163</p>
<p>4.8.4.2 Thermal Properties 163</p>
<p>4.8.4.3 Barrier Properties 163</p>
<p>4.8.4.4 Antimicrobial Properties 164</p>
<p>4.8.5 Applications of Nanocomposites 164</p>
<p>4.8.6 ZnO–Based Composites in Food Packaging 164</p>
<p>4.8.6.1 Preparation of ZnO Composites 166</p>
<p>4.8.6.2 Morphology of the ZnO Composites 167</p>
<p>4.8.6.3 Mechanical Properties of ZnO Composites 167</p>
<p>4.8.6.4 Barrier Properties of ZnO Composites 169</p>
<p>4.9 Conclusions 171</p>
<p>References 172</p>
<p>5 Silicium–Based Nanocomposite Materials for Food Packaging Applications 175<br />Tanja Radusin, Ivan Risti , Branka Pili , Donatella Duraccio and Aleksandra Novakovi </p>
<p>5.1 Introduction 176</p>
<p>5.2 Nanosilica/Polymer Composites 178</p>
<p>5.2.1 Composite Preparation 179</p>
<p>5.2.1.1 Blending 179</p>
<p>5.2.1.2 Sol Gel Process 181</p>
<p>5.2.1.3 In Situ Polymerization 181</p>
<p>5.3 Characterization of Polymer/Nancomposites 181</p>
<p>5.3.1 Morphology 182</p>
<p>5.3.2 Physical Chemical Properties 184</p>
<p>5.3.2.1 Thermal Properties 184</p>
<p>5.3.2.2 Mechanical Properties 186</p>
<p>5.3.2.3 Crystallization of Polymer/Silica Nanocomposites 187</p>
<p>5.3.3 Barrier Properties 195</p>
<p>5.3.4 Optical Properties 196</p>
<p>5.3.5 Antimicrobial Properties 196</p>
<p>5.4 Conclusion 198</p>
<p>References 198</p>
<p>6 Nanoiron–Based Composite Oxygen Scavengers for Food Packaging 209<br />Zenon Foltynowicz</p>
<p>6.1 Introduction 210</p>
<p>6.1.1 The Effect of Oxygen on Packed Products 210</p>
<p>6.1.2 The Need of Oxygen Scavengers 211</p>
<p>6.2 Characteristics of Oxygen Scavengers 212</p>
<p>6.2.1 Types and Classification of Oxygen Absorbers 212</p>
<p>6.2.2 Iron–Based Oxygen Scavengers 213</p>
<p>6.2.3 The Factors Influences the Efficiency of Iron–Based Oxygen Scavengers 214</p>
<p>6.3 Nanomaterials and Nanoiron 216</p>
<p>6.3.1 Nanomaterials Property 216</p>
<p>6.3.2 Nanoiron Property 216</p>
<p>6.3.3 Nanoiron Preparation 217</p>
<p>6.4 Nanoiron–Based Composite Oxygen Scavengers 219</p>
<p>6.4.1 Why Nanoiron? 219</p>
<p>6.4.2 Nanoiron with Specific Properties 221</p>
<p>6.4.3 Composite Oxygen Scavengers Based on Nanoiron 223</p>
<p>6.4.4 Safety of the Use of Composite Oxygen Scavengers Based on Nanoiron 226</p>
<p>References 227</p>
<p>7 Carbon Nanotubes (CNTs) Composite Materials and Food Packaging 235<br />Dan Xu</p>
<p>7.1 Introductions on Carbon Nanotubes 236</p>
<p>7.2 Polymer/CNTs Composite Materials 236</p>
<p>7.2.1 Modification of CNTs 237</p>
<p>7.2.2 Fabrication Method 238</p>
<p>7.2.3 Properties 238</p>
<p>7.3 Safety Issues of CNTs and Polymer/CNTs Composites 243</p>
<p>7.3.1 Toxicity of CNTs 243</p>
<p>7.3.2 Migration of CNTs from Polymer/CNTs Composites 243</p>
<p>7.4 Outlook 244</p>
<p>References 244</p>
<p>8 Polymer/Graphene Nanocomposites for Food Packaging 251<br />Steven Merritt, Chaoying Wan, Barbara Shollock, Samson Patole and David M. Haddleton</p>
<p>8.1 Polymers for Food Packaging 251</p>
<p>8.2 Polymers for Steel Can Packaging 252</p>
<p>8.3 Water Permeation and Anticorrosion of Polymer Coatings 253</p>
<p>8.4 Polymer Food Interactions 255</p>
<p>8.5 Polymer/Clay Nanocomposites 255</p>
<p>8.6 Polymer/Graphene Nanocomposites 257</p>
<p>8.6.1 Graphene and its Derivatives for Food Packaging 257</p>
<p>8.6.2 Biodegradable Polymer/Graphene Nanocomposites 259</p>
<p>8.6.3 Synthetic Polymer/Graphene Nanocomposites 262</p>
<p>8.7 Summary and Outlook 263</p>
<p>References 264</p>
<p>9 Biodegradability and Compostability of Food Nanopackaging Materials 269<br />Tomy J. Guti&eacute;rrez</p>
<p>9.1 Introduction 269</p>
<p>9.2 Biodegradability and Compostability 270</p>
<p>9.3 Biodegradability and Compostability of Food Nanopackaging Materials 274</p>
<p>9.3.1 Biodegradability and Compostability of Food Nanopackaging Made from Biopolymers 276</p>
<p>9.3.2 Biodegradability and Compostability of Food Nanopackaging Made from Nanoclays 277</p>
<p>9.3.3 Biodegradability and Compostability of Food Nanopackaging Made from Bionanocomposites 279</p>
<p>9.3.3.1 Biodegradability and Compostability of Food Nanopackaging Made from Bionanocomposites Biopolymers/Nanoclays 281</p>
<p>9.3.3.2 Biodegradability and Compostability of Food Nanopackaging Made from Bionanocomposites Biopolymer/Nanocellulosic Materials 287</p>
<p>9.4 Conclusion 288</p>
<p>Conflicts of Interest 290</p>
<p>Acknowledgments 290</p>
<p>References 290</p>
<p>10 Nanocellulose in Food Packaging 297<br />Paula Criado, Farah M. J. Hossain, St&eacute;phane Salmieri and Monique Lacroix</p>
<p>10.1 Antimicrobial Effectiveness of Biopolymeric Films/Coatings Containing Cellulose Nanostructures 298</p>
<p>10.1.1 Biopolymeric Films Containing CNCs 298</p>
<p>10.1.2 Bioactive Films Containing CNFs 305</p>
<p>10.1.3 Nanostructured Bio–Based Bacterial Cellulose (BC)–Containing Films 306</p>
<p>10.2 Physicochemical Properties of Bio–Nanocomposites Materials Reinforced with CNC 307</p>
<p>10.3 Enhancement of the Mechanical Properties of Polymers with CNC 308</p>
<p>10.4 Enhancement of the Barrier Properties of Polymers with CNC 309</p>
<p>10.5 Research Works on CNC as Biodegradable Reinforcement and Barrier Component 310</p>
<p>10.5.1 Grafting of Cellulose Nanocrystals for Food Packaging 312</p>
<p>10.5.2 TEMPO–Mediated Oxidation of Nanocellulose 312</p>
<p>10.5.3 Functionalization of Nanocellulose via TEMPO–Mediated Oxidation 313</p>
<p>10.5.4 Cationization of Nanocellulose with Antimicrobial Purposes 314</p>
<p>10.5.5 Esterification 316</p>
<p>10.5.6 Non–Covalent Surface Chemical Modification 317</p>
<p>10.5.7 Polymerization of Bioactive Compounds onto Nanocellulose Surface 318</p>
<p>10.6 Conclusion 319</p>
<p>References 320</p>
<p>11 Nanocellulose in Combination with Inorganic/Organic Biocides for Food Film Packaging Applications Safety Issues Review 331<br />Kelsey L O Donnell, Gloria S. Oporto and Noelle Comolli</p>
<p>11.1 Introduction 332</p>
<p>11.1.1 Typical Polymers and Processes Used to Prepare Flexible Films in the Packaging Industry 332</p>
<p>11.1.2 Current Organic and Inorganic Antimicrobial Materials (Biocides) Used in Packaging and Correlating Processing Conditions 334</p>
<p>11.1.3 Release of Active Components (Biocides) From Packaging Films Tentative Mechanisms 336</p>
<p>11.2 Nanocellulose in Flexible Film Food Packaging 336</p>
<p>11.2.1 Current Forms of Cellulose Used in Packaging 336</p>
<p>11.2.2 Nanocellulose in Flexible Film Food Packaging 337</p>
<p>11.2.3 Nanocellulose in Combination with Organic and Inorganic Antimicrobial Materials 339</p>
<p>11.2.4 Nanocelulose in Combination with Copper and Benzalkounium Chloride West Virginia University (WVU) Preliminary Results 341</p>
<p>11.2.4.1 Nanocellulose – Copper/Zinc: Synergistic Effect (Preliminary Experiments) 342</p>
<p>11.2.4.2 Nanocellulose – Benzalkonium Chloride (BZK) (Preliminary Experiments) 342</p>
<p>11.3 Health and Environmental Toxicity Evaluations of Active Antimicrobial Packaging 343</p>
<p>11.3.1 General Toxic Evaluations on Packaging Materials (In Vivo, In Vitro Testing) the United States 344</p>
<p>11.3.2 General Toxic Evaluations on Packaging Materials (In Vivo, In Vitro Testing) Europe 345</p>
<p>11.3.3 Specific Toxic Evaluation on Cellulosic and Nanocellulosic Materials 348</p>
<p>References 350</p>
<p>12 Composite Materials Based on PLA and its Applications in Food Packaging 355<br />Jes&uacute;s R. Rodr&iacute;guez–N&uacute;&ntilde;ez, Tom&aacute;s J. Madera–Santana, Heidy Burrola–N&uacute;&ntilde;ez and Efr&eacute;n G. Mart&iacute;nez–Encinas</p>
<p>12.1 Introduction 356</p>
<p>12.2 Synthesis of Polylactic Acid 356</p>
<p>12.3 Reinforcing Agents 359</p>
<p>12.3.1 Natural Fibers and Fillers 360</p>
<p>12.3.2 Synthetic Fibers and Fillers 366</p>
<p>12.4 Surface Modification of Fibers and Fillers 366</p>
<p>12.4.1 Physical Methods (Corona, Plasma, Irradiation Treatments) 367</p>
<p>12.4.2 Chemical Methods (Alkaline, Acetylation, Maleation, Silane, Enzymatic Treatment) 368</p>
<p>12.5 Nanostructures in the PLA Matrix 370</p>
<p>12.6 Processing Techniques 371</p>
<p>12.6.1 Processing Technologies of PLA Composites 372</p>
<p>12.6.1.1 Compression Molding 372</p>
<p>12.6.1.2 Extrusion 374</p>
<p>12.6.1.3 Injection Molding 375</p>
<p>12.6.1.4 Extrusion or Injection Blow Molding 377</p>
<p>12.6.1.5 Calendering, Cast Film, and Sheet 378</p>
<p>12.6.1.6 Thermoforming 379</p>
<p>12.6.1.7 Foaming PLA 379</p>
<p>12.7 Properties Related to Packaging Applications 381</p>
<p>12.7.1 Physical Properties 382</p>
<p>12.7.2 Mechanical Properties 384</p>
<p>12.7.3 Thermal Properties 385</p>
<p>12.7.4 Functional Properties 387</p>
<p>12.8 Recyclability of PLA 388</p>
<p>12.9 Biodegradation of PLA 389</p>
<p>12.10 Future Tendencies 390</p>
<p>References 391</p>
<p>13 Nanomaterial Migration from Composites into Food Matrices 401<br />Victor Gomes Lauriano Souza, Regiane Ribeiro–Santos, Patricia Freitas Rodrigues, Caio Gomide Otoni, Maria Paula Duarte, Isabel M. Coelhoso and Ana Luisa Fernando</p>
<p>13.1 Introduction 402</p>
<p>13.2 Nanotechnology in the Food Industry 403</p>
<p>13.2.1 Nanoparticle Characterization Techniques 403</p>
<p>13.2.2 Nanoparticle Characterization in Food Matrices 406</p>
<p>13.2.3 Nanomaterial Migration from Composites into Food Matrices: Case Studies 407</p>
<p>13.3 Nanoparticle Toxicology 413</p>
<p>13.3.1 Toxicological Tests 415</p>
<p>13.3.2 Toxicological Studies of ENMs Used in the Food Packaging Industry 417</p>
<p>13.3.3 Ecotoxicology of ENMs 419</p>
<p>13.4 Migration Assays and Current Legislation 420</p>
<p>13.4.1 Food Contact Nanomaterials 424</p>
<p>13.5 Conclusion 426</p>
<p>Acknowledgments 427</p>
<p>References 427</p>
<p>Index 437</p>

Rubrieken

    Personen

      Trefwoorden

        Composite Materials for Food Packaging