Biodegradable and Bio–based Polymers for Environmental and Biomedical Applications
Environmental and Biomedical Applications
Specificaties
Inhoudsopgave
<p>1 Biomedical Applications for Thermoplastic Starch 1<br /> Antonio José Felix de Carvalho and Eliane Trovatti</p>
<p>1.1 Starch as Source of Material in the Polymer Industry 1</p>
<p>1.2 Starch in Plastic Material and Thermoplastic Starch 2</p>
<p>1.3 Uses of Starch and TPS in Biomedical and Pharmaceutical Fields 5</p>
<p>1.3.1 Native Starch (Granule) as Pharmaceutical Excipient 6</p>
<p>1.3.2 Gelatinized and Thermoplastic Starch in Biomedical Application 6</p>
<p>1.3.3 Starch–based Scaffolds 10</p>
<p>1.3.4 Starch–based Biosorbable Materials – Degradation Inside Human Body 12</p>
<p>1.3.5 Cell Response to Starch and Its Degradation Products 15</p>
<p>1.4 Conclusion and Future Perspectives for Starch–based Polymers 16</p>
<p>Acknowledgment 16</p>
<p>References 16</p>
<p>2 Polyhydroxyalkanoates: The Application of Eco–Friendly Materials 25<br /> G.V.N. Rathna, Bhagyashri S. Thorat Gadgil and Naresh Killi</p>
<p>2.1 Introduction 25</p>
<p>2.2 Natural Occurrence 26</p>
<p>2.3 Bio–Synthetic/ Semi–Synthetic Approach 29</p>
<p>2.4 Environmental Aspects 31</p>
<p>2.5 Applications 33</p>
<p>2.6 Biomedical Applications 33</p>
<p>2.6.1 Drug Delivery 34</p>
<p>2.6.2 Implants and Scaffolds 36</p>
<p>2.7 Biodegradable Packaging Material 38</p>
<p>2.8 Agriculture 44</p>
<p>2.9 Other Applications 45</p>
<p>2.10 Scope of PHAs 46</p>
<p>2.11 Conclusions 46</p>
<p>References 47</p>
<p>3 Cellulose Microfibrils from Natural Fiber Reinforced Biocomposites and its Applications 55<br /> Atul P Johari, Smita Mohanty and Sanjay K Nayak</p>
<p>3.1 Introduction 55</p>
<p>3.1.1 Industrial Applications 57</p>
<p>3.2 Natural Fibers: Applications and Limitations 58</p>
<p>3.3 Plant–based Fibers 59</p>
<p>3.4 Chemical Composition, structure and Properties of Sisal Fiber 60</p>
<p>3.4.1 Cellulose Fibers 61</p>
<p>3.4.2 Hemicellulose 61</p>
<p>3.4.3 Lignin 62</p>
<p>3.4.4 Pectin 63</p>
<p>3.4.5 Bio–based and Biodegradable Polymers 63</p>
<p>3.5 Biocomposites 64</p>
<p>3.6 Classification of Biocomposites 65</p>
<p>3.6.1 Green Composites 65</p>
<p>3.6.2 Hybrid Composites 66</p>
<p>3.7 Biocomposites of CMF Reinforced of Poly (lactic acid) 67</p>
<p>3.7.1 Extraction of Cellulose Microfibrils from Sisal Fiber 67</p>
<p>3.7.2 CMF Extraction Process 69</p>
<p>3.7.3 Fabrication of PLA/CMF Biocomposite 72</p>
<p>3.8 Effect of CMF Reinforcement on the Mechanical Properties of PLA 72</p>
<p>3.9 FT–IR Analysis of Untreated Sisal Fiber (UTS), Mercerized Sisal Fiber (MSF) and Cellulose Microfibrils (CMF) 73</p>
<p>3.10 Crystalline Structure of UTS, MSF and CMF 75</p>
<p>3.11 Particle Size Determination: Transmission Electron Microscopy (TEM) 76</p>
<p>3.12 Thermal Properties 77</p>
<p>3.12.1 Differential Scanning Calorimetry of CMF Reinforced PLA biocomposites 77</p>
<p>3.12.2 Thermo Gravimetric Analysis of CMF Reinforced PLA Biocomposites 79</p>
<p>3.12.3 Dynamic Mechanical Analysis (DMA) of CMF Reinforced PLA Biocomposites 82</p>
<p>3.13 Scanning Electron Microscopy 85</p>
<p>3.13.1 Surface Morphology of Sisal Fiber (USF, MSF and CMF) 85</p>
<p>3.13.2 Surface Morphology of CMF Reinforced PLA</p>
<p>References 91</p>
<p>4 Tannins: A Resource to Elaborate Aromatic and Biobased Polymers 97<br /> Alice Arbenz and Luc Avérous</p>
<p>4.1 Introduction 97</p>
<p>4.2 Tannin Chemistry 98</p>
<p>4.2.1 Historical Outline 98</p>
<p>4.2.2 Classification and Chemical Structure of Vascular Plant Tannins 99</p>
<p>4.2.3 Hydrolysable Tannins 99</p>
<p>4.3 Complex Tannins 101</p>
<p>4.4 Condensed Tannins 101</p>
<p>4.5 Non–vascular Plant Tannins 103</p>
<p>4.5.1 Phlorotannins with Ether Bonds 104</p>
<p>4.5.2 Phlorotannins with Phenyl bonds 104</p>
<p>4.5.3 Phlorotannins with Ether and Phenyl bonds 105</p>
<p>4.5.4 Phlorotannins with Ibenzo–p–dioxin Links 106</p>
<p>4.6 Extraction of Tannins 106</p>
<p>4.7 Chemical Modification 108</p>
<p>4.7.1 General Background 108</p>
<p>4.7.2 Heterocycle Reactivity 108</p>
<p>4.8 Heterocyclic Ring Opening with Acid 110</p>
<p>4.9 Sulfonation 112</p>
<p>4.9.1 Reactivity of Nucleophilic Sites 113</p>
<p>4.9.2 Bromination 114</p>
<p>4.9.3 Reactions with Aldehydes 116</p>
<p>4.9.4 Reaction with the Hexamine 117</p>
<p>4.10 Mannich Reaction 119</p>
<p>4.11 Coupling Reaction 119</p>
<p>4.11.1 Michael Reaction 119</p>
<p>4.11.2 Oxa–Pictet–Spengler Reaction 120</p>
<p>4.11.3 Functionalization of the Hydroxyl Groups 121</p>
<p>4.11.4 Acylation 121</p>
<p>4.12 Etherification 124</p>
<p>4.12.1 Substitution by Ammonia 127</p>
<p>4.12.2 Reactions Between Tannin and Epoxy Groups 128</p>
<p>4.13 Alkoxylation 129</p>
<p>4.13.1 Reaction with Isocyanates 130</p>
<p>4.14 Toward Biobased Polymers and Materials 130</p>
<p>4.14.1 Adhesives 130</p>
<p>4.14.2 Phenol–formaldehyde Foam Type 132</p>
<p>4.15 Materials Based on Polyurethane 133</p>
<p>4.15.1 Polyurethanes Foams 133</p>
<p>4.15.2 Non–porous Polyurethane Materials 133</p>
<p>4.16 Materials Based on Polyesters 134</p>
<p>4.16.1 Materials Based on Epoxy Resins 134</p>
<p>4.17 Conclusion 135</p>
<p>Acknowledgments 136</p>
<p>References 136</p>
<p>5 Electroactivity and Applications of Jatropha Latex and Seed 149<br /> S. S. Pradhan and A. Sarkar</p>
<p>5.1 Introduction 149</p>
<p>5.2 Plant Latex 150</p>
<p>5.3 Jatropha Latex 151</p>
<p>5.3.1 Chemistry 151</p>
<p>5.4 Jatropha Seed 151</p>
<p>5.5 Material Preparation 151</p>
<p>5.6 Microscopic Observations 153</p>
<p>5.6.1 X–ray Diffraction 153</p>
<p>5.6.2 Electronic or Vibrational Properties 154</p>
<p>5.7 Electroactivity in Jatropha Latex 157</p>
<p>5.7.1 Ionic Liquid Property 157</p>
<p>5.8 Electroactivity in Jatropha Latex 158</p>
<p>5.8.1 DC Volt–ampere Characteristics 162</p>
<p>5.8.2 Temperature Variation of AC Conductivity 164</p>
<p>5.9 Applications 165</p>
<p>5.10 Conclusion 167</p>
<p>Acknowledgements 168</p>
<p>References 168</p>
<p>6 Characteristics and Applications of PLA 171<br /> Sandra Domenek and Violette Ducruet</p>
<p>6.1 Introduction 171</p>
<p>6.2 Production of PLA 172</p>
<p>6.2.1 Production of Lactic Acid 172</p>
<p>6.2.2 Synthesis of PLA 174</p>
<p>6.3 Physical PLA properties 179</p>
<p>6.4 Microstructure and Thermal properties 181</p>
<p>6.4.1 Amorphous Phase of PLA 181</p>
<p>6.4.2 Crystalline Structure of PLA 183</p>
<p>6.4.3 Crystallization Kinetics of PLA 185</p>
<p>6.4.4 Melting of PLA 187</p>
<p>6.5 Mechanical Properties of PLA 188</p>
<p>6.6 Barrier Properties of PLA 190</p>
<p>6.6.1 Gas Barrier Properties of PLA 190</p>
<p>6.6.2 Water Vapour Permeability of PLA 193</p>
<p>6.6.3 Permeability of Organic Vapours through PLA 194</p>
<p>6.7 Degradation Behaviour of PLA 195</p>
<p>6.7.1 Thermal Degradation 195</p>
<p>6.7.2 Hydrolysis 196</p>
<p>6.7.3 Biodegradation 198</p>
<p>6.8 Processing 200</p>
<p>6.9 Nanocomposites 202</p>
<p>6.10 Applications 204</p>
<p>6.10.1 Biomedical Applications of PLA 204</p>
<p>6.10.2 Packaging Applications Commodity of PLA 205</p>
<p>6.10.3 Textile Applications 208</p>
<p>6.10.4 Automotive Applications of PLA 209</p>
<p>6.10.5 Building Applications 210</p>
<p>6.10.6 Other Applications of PLA 210</p>
<p>6.11 Conclusion 211</p>
<p>References 211</p>
<p>7 PBS Makes Its Entrance into the Family of Biobased Plastics 225<br /> Laura Sisti, Grazia Totaro and Paola Marchese</p>
<p>7.1 Introduction 225</p>
<p>7.2 PBS Market 227</p>
<p>7.3 PBS Production 229</p>
<p>7.3.1 Succinic Acid Production 230</p>
<p>7.3.2 1,4–Butanediol Production 233</p>
<p>7.3.3 Synthesis of PBS 234</p>
<p>7.4 Properties of PBS 237</p>
<p>7.5 Copolymers of PBS 240</p>
<p>7.5.1 Random Copolymers 240</p>
<p>7.5.2 Block Copolymers 247</p>
<p>7.5.3 Chain Branching 250</p>
<p>7.6 PBS Composites and Nanocomposites 253</p>
<p>7.6.1 Inorganic Fillers 253</p>
<p>7.6.2 Natural Fibers 258</p>
<p>7.7 Degradation and Recycling 262</p>
<p>7.7.1 Enzymatic Degradation 262</p>
<p>7.7.2 Non Enzymatic Degradation 266</p>
<p>7.7.3 Natural Weathering Degradation 266</p>
<p>7.7.4 Thermal Degradation 267</p>
<p>7.7.5 Recycling 267</p>
<p>7.8 Processing and Applications of PBS and its Copolymers 269</p>
<p>7.9 Conclusions 273</p>
<p>Abbreviations 273</p>
<p>References 274</p>
<p>8 Development of Biobased Polymers and Their Composites from Vegetable Oils 289<br /> Patit P. Kundu and Rakesh Das </p>
<p>8.1 Introduction 289</p>
<p>8.2 Source and Functional Groups of Vegetable Oil 290</p>
<p>8.3 Direct Cross–Linking of Vegetable Oil for</p>
<p>Polymer Synthesis 292</p>
<p>8.3.1 Cationic Polymerization 292</p>
<p>8.4 Free Radical Polymerization 295</p>
<p>8.5 Chemical Modification of Vegetable Oils for Polymer Synthesis 297</p>
<p>8.5.1 Synthesis of Polymers after Epoxidation of Vegetable Oils 297</p>
<p>8.6 Polymer Synthesis after Esterification of Vegetable Oils 299</p>
<p>8.7 Polyol and Polyurethanes from Vegetable Oils 302</p>
<p>8.8 Polymer Composites and Nanocomposites from Vegetable Oils 306</p>
<p>8.9 Conclusions 311</p>
<p>References 312</p>
<p>9 Polymers as Drug Delivery Systems 323<br /> Magdy W. Sabaa</p>
<p>9.1 Introduction 323</p>
<p>9.2 Types of Modified Drug Delivery Systems 324</p>
<p>9.3 Concept of Drug Delivery Matrix 325</p>
<p>9.4 Polymeric Materials as Carriers for Drug Delivery Systems 326</p>
<p>9.4.1 Polysaccharides and Modified Polysaccharides as Matrices for Drug Delivery Systems 326</p>
<p>9.4.2 pH–sensitive as Drug Delivery Systems 331</p>
<p>9.4.3 Thermo–sensitive as Drug Delivery Systems 335</p>
<p>9.4.4 Light–sensitive as Drug Delivery Systems 338</p>
<p>9.5 Conclusions 340</p>
<p>References 341</p>
<p>10 Nanocellulose as a Millennium Material with Enhancing Adsorption Capacities 351<br /> Norhene Mahfoudhi and Sami Boufi</p>
<p>10.1 Introduction 351</p>
<p>10.2 From Cellulose to Nanocellulose 353</p>
<p>10.3 General Remarks about Adsorption Phenomena 355</p>
<p>10.4 Nanobibrillated Cellulose as a Novel Adsorbent 359</p>
<p>10.5 NFC in Heavy Metal Adsorption 363</p>
<p>10.6 NFC as an Adsorbent for Organic Pollutants 372</p>
<p>10.7 NFC in Oil Adsorption 373</p>
<p>10.8 NFC in Adsorption of Dyes 376</p>
<p>10.9 Nanofibrillar Cellulose as a Flocculent for Waste Water 379</p>
<p>10.10 NFC in CO2 Adsorption 380</p>
<p>10.11 Conclusion 381</p>
<p>References 381</p>
<p>11 Towards Biobased Aromatic Polymers from Lignins 387<br /> Stephanie Laurichesse and Luc Avérous 387</p>
<p>11.1 Introduction 388</p>
<p>11.2 Lignin Chemistry 389</p>
<p>11.2.1 Historical Outline 389</p>
<p>11.2.2 Chemical Structure 390</p>
<p>11.2.3 Physical Properties 391</p>
<p>11.3 Isolation of Lignin from Wood 393</p>
<p>11.3.1 The Biorefinery Concept 393</p>
<p>11.3.2 Extraction Processes and their Resulting Technical Lignins 394</p>
<p>11.4 Chemical Modification 398</p>
<p>11.4.1 General Background 398</p>
<p>11.4.2 Fragmentation of Lignin 399</p>
<p>11.4.3 Pyrolysis 401</p>
<p>11.4.4 Gasification 403</p>
<p>11.4.5 Oxidation 403</p>
<p>11.4.6 Liquefaction 404</p>
<p>11.4.7 Enzymatic Oxidation 406</p>
<p>11.4.8 Outlook 407</p>
<p>11.5 Synthesis of New Chemical Active Sites 407</p>
<p>11.5.1 Alkylation/Dealkylation 407</p>
<p>11.5.2 Hydroxalkylation 409</p>
<p>11.5.3 Amination 410</p>
<p>11.5.4 Nitration 411</p>
<p>11.6 Functionalization of Hydroxyl Groups 412</p>
<p>11.6.1 Esterification 412</p>
<p>11.6.2 Phenolation 415</p>
<p>11.6.3 Etherification and Ring Opening Polymerisations 416</p>
<p>11.6.4 Urethanisation 418</p>
<p>11.7 Toward Lignin Based Polymers and Materials 420</p>
<p>11.7.1 Lignin as a Viable Route for</p>
<p>Polymers Syntheses 420</p>
<p>11.7.2 ATRP – A Useful Method to Develop Lignin–Based Functional Material 422</p>
<p>11.7.3 High Performance Material Made with Lignin: Carbon Fibers 423</p>
<p>11.7.4 Toward Commercialized Lignin–based Polymers 424</p>
<p>11.8 Conclusion 424</p>
<p>Acknowledgments 425</p>
<p>References 425</p>
<p>12 Biopolymers Proteins (Polypeptides) and Nucleic Acids 439<br /> S. Georgiev, Z. Angelova and T. Dekova</p>
<p>12.1 Structure of Protein Molecules 440</p>
<p>12.1.1 Peptide Bonds 441</p>
<p>12.1.2 Secondary Structure of Protein Molecule 441</p>
<p>12.1.3 Tertiary Structure of Proteins 442</p>
<p>12.1.4 Quaternary Structure of Proteins 443</p>
<p>12.2 Abnormal Haemoglobin 444</p>
<p>12.3 Methods for Proteome Analysis 446</p>
<p>12.4 Advantages of the Method 446</p>
<p>12.5 Study of Proteins with Post–Translational Modifications 447</p>
<p>12.6 Biodegradable Polymers 448</p>
<p>12.6.1 DNA The Molecule of Heredity 451</p>
<p>12.6.2 Experiments Designate DNA as the Genetic Material 452</p>
<p>12.6.3 Bacterial Transformation Implicates DNA as the Substance of Genes 452</p>
<p>12.6.4 Identification of RNA as the Genetic Material 454</p>
<p>12.6.5 The Structures of DNA and RNA 455</p>
<p>12.6.6 Left Handed DNA Helices 456</p>
<p>12.6.7 Some DNA Molecules are Circular instead of Linear 456</p>
<p>12.6.8 RNA as the Genetic Material (Structure) 457</p>
<p>12.6.9 Hammerhead Ribozymes HHRs 458</p>
<p>12.7 Regulation Gene Function Through RNA Interfering and MicroRNA Pathways 460</p>
<p>12.7.1 How dsRNA can Switch off Expression of a Gene? 461</p>
<p>12.7.2 MicroRNAs Also Control the Expression of Some Genes 463</p>
<p>12.8 DNA Vaccines 464</p>
<p>12.9 Conclusion 467</p>
<p>References 467</p>
<p>13 Tamarind Seed Polysaccharide–based Multiple–unit Systems for Sustained Drug Release 471<br /> Amit Kumar Nayak 471</p>
<p>13.1 Introduction 471</p>
<p>13.2 Tamarind Seed Polysaccharide 473</p>
<p>13.2.1 Sources and Extraction 473</p>
<p>13.3 Composition 474</p>
<p>13.4 Properties 474</p>
<p>13.5 Use of Tamarind Seed Polysaccharide in Drug Delivery 475</p>
<p>13.6 Tamarind Seed Polysaccharide–based Microparticle/Beads for Sustained Drug Delivery 476</p>
<p>13.7 Extrusion–Spheronization Method 476</p>
<p>13.7.1 Tamarind Seed Polysaccharide Spheroids Containing Diclofenac Sodium 476</p>
<p>13.8 Ionotropic–Gelation Method 478</p>
<p>13.8.1 Tamarind Seed Polysaccharide–alginate Beads Containing Diclofenac Sodium 478</p>
<p>13.8.2 Tamarind Seed Polysaccharide–alginate Mucoadhesive Microspheres Containing Gliclazide 480</p>
<p>13.8.3 Tamarind Seed Polysaccharide–alginate Mucoadhesive Beads Containing Metformin HCl 481</p>
<p>13.7.4 Tamarind Seed Polysaccharide–pectinate Mucoadhesive Beads Containing Metformin HCl 481</p>
<p>13.8.5 Tamarind Seed Polysaccharide–gellan Mucoadhesive Beads Containing Metformin HCl 483</p>
<p>13.9 Covalent Crosslinking 485</p>
<p>13.9.1 Chitosan–Tamarind Seed Polysaccharide Interpenetrating Polymeric Network Microparticles Containing Aceclofenac 485</p>
<p>13.10 Combined Ionotropic–Gelation/Covalent Crosslinking 488</p>
<p>13.10.1 Interpenetrated Polymer Network Microbeads Containing Diltiazem–Indion 254® Complex made of Tamarind Seed Polysaccharide and Sodium Alginate 488</p>
<p>13.11 By Ionotropic Emulsion–gelation 489</p>
<p>13.11.1 Oil–entrapped Tamarind Seed Polysaccharide– Alginate Blend Floating Beads Containing Diclofenac Sodium 489</p>
<p>13.12 Conclusion 490</p>
<p>References 490</p>
<p>Index 493</p>