Forensic Microbiology
Samenvatting
Forensic Microbiology focuses on newly emerging areas of microbiology relevant to medicolegal and criminal investigations: postmortem changes, establishing cause of death, estimating postmortem interval, and trace evidence analysis. Recent developments in sequencing technology allow researchers, and potentially practitioners, to examine microbial communities at unprecedented resolution and in multidisciplinary contexts. This detailed study of microbes facilitates the development of new forensic tools that use the structure and function of microbial communities as physical evidence. Chapters cover:
Experiment design
Data analysis
Sample preservation
The influence of microbes on results from autopsy, toxicology, and histology
Decomposition ecology
Trace evidence
This diverse, rapidly evolving field of study has the potential to provide high quality microbial evidence which can be replicated across laboratories, providing spatial and temporal evidence which could be crucial in a broad range of investigative contexts. This book is intended as a resource for students, microbiologists, investigators, pathologists, and other forensic science professionals.
Specificaties
Inhoudsopgave
<p>List of contributors, xix</p>
<p>Foreword, xxii</p>
<p>Series preface, xxiv</p>
<p>Preface, xxv</p>
<p>1 A primer on microbiology, 1<br />David O. Carter, Emily N. Junkins and Whitney A. Kodama</p>
<p>1.1 Introduction, 1</p>
<p>1.2 Microbial characteristics, 2</p>
<p>1.3 Microorganisms and their habitats, 7</p>
<p>1.4 Competition for resources, 10</p>
<p>1.5 The ecology of some forensically relevant bacteria, 11</p>
<p>1.6 Archaea and microbial eukaryotes, 20</p>
<p>1.7 Conclusions, 21</p>
<p>2 History, current, and future use of microorganisms as physical evidence, 25<br />Zachary M. Burcham and Heather R. Jordan</p>
<p>2.1 Introduction, 25</p>
<p>2.2 Methods for identification, 26</p>
<p>2.3 Estimating PMI, 30</p>
<p>2.4 Cause of death, 36</p>
<p>2.5 Trace evidence, 40</p>
<p>2.6 Other medicolegal aspects, 43</p>
<p>2.7 Needs that must be met for use in chain of custody, 48</p>
<p>2.8 Summary, 49</p>
<p>3 Approaches and considerations for forensic microbiology decomposition research, 56<br />M. Eric Benbow and Jennifer L. Pechal</p>
<p>3.1 Introduction, 56</p>
<p>3.2 Challenges of human remains research, 57</p>
<p>3.3 Human remains research during death investigations, 58</p>
<p>3.4 Human surrogates in research, 60</p>
<p>3.5 Considerations for field studies, 61</p>
<p>3.6 Descriptive and hypothesis ]driven research, 62</p>
<p>3.7 Experiment design, 65</p>
<p>3.8 Validation studies, 69</p>
<p>4 Sampling methods and data generation, 72<br />Jennifer L. Pechal, M. Eric Benbow and Tawni L. Crippen</p>
<p>4.1 Introduction, 72</p>
<p>4.2 Materials, 73</p>
<p>4.3 Sample collection techniques, 79</p>
<p>4.4 Sample preservation, storage, and handling techniques, 80</p>
<p>4.5 Data considerations, 86</p>
<p>4.6 Conclusions, 90</p>
<p>5 An introduction to metagenomic data generation, analysis, visualization, and interpretation, 94<br />Baneshwar Singh, Tawni L. Crippen and Jeffery K. Tomberlin</p>
<p>5.1 Introduction, 94</p>
<p>5.2 DNA extraction, 96</p>
<p>5.3 DNA sequencing, 99</p>
<p>5.4 Marker gene data analysis, visualization, and interpretation, 107</p>
<p>5.5 Multi ]omics data analysis, visualization, and interpretation, 114</p>
<p>5.6 Statistical analysis, 117</p>
<p>5.7 Major challenges and future directions, 118</p>
<p>6 Culture and long ]term storage of microorganisms for forensic science, 127<br />Emily N. Junkins, Embriette R. Hyde and David O. Carter</p>
<p>6.1 Introduction, 127</p>
<p>6.2 The value of culturing microorganisms, 128</p>
<p>6.3 Collection and handling of samples, 132</p>
<p>6.4 Protocols, 134</p>
<p>6.5 Conclusions, 143</p>
<p>7 Clinical microbiology and virology in the context of the autopsy, 146<br />Elisabeth J. Ridgway, Bala M. Subramanian and Mohammad Raza</p>
<p>7.1 Introduction, 146</p>
<p>7.2 The historical view of autopsy microbiology, 147</p>
<p>7.3 Which samples should you collect and how?, 149</p>
<p>7.4 Which methods are available for the diagnosis of infection?, 154</p>
<p>7.5 How do you put the results into context?, 156</p>
<p>7.6 What are the risks of transmission of infection in the postmortem room?, 163</p>
<p>7.7 How does autopsy microbiology contribute to the diagnosis of specific conditions?, 164</p>
<p>8 Postmortem bacterial translocation, 192<br />Vadim Mesli, Christel Neut and Valery Hedouin</p>
<p>8.1 Introduction, 192</p>
<p>8.2 Bacterial translocation in health and disease, 195</p>
<p>8.3 Bacterial translocation in humans, 198</p>
<p>8.4 Physiological changes after death influencing the selection of commensal bacteria, 200</p>
<p>8.5 Consequences of bacterial translocation, 204</p>
<p>9 Microbial impacts in postmortem toxicology, 212<br />Jared W. Castle, Danielle M. Butzbach, G. Stewart Walker, Claire E. Lenehan, Frank Reith and K. Paul Kirkbride</p>
<p>9.1 Introduction, 212</p>
<p>9.2 Microbial factors complicating postmortem toxicological analyses, 213</p>
<p>9.3 Precautions taken to limit microbial impacts, 214</p>
<p>9.4 Experimental protocols used to investigate postmortem drug and metabolite degradation due to microbial activity, 218</p>
<p>9.5 Examples of microbially mediated drug degradation, 219</p>
<p>10 Microbial communities associated with decomposing corpses, 245<br />Embriette R. Hyde, Jessica L. Metcalf, Sibyl R. Bucheli, Aaron M. Lynne and Rob Knight</p>
<p>10.1 Introduction, 245</p>
<p>10.2 The soil microbiology of decomposition, 248</p>
<p>10.3 Freshwater and marine decomposition, 252</p>
<p>10.4 The microbiology of nonhuman models of terrestrial decomposition, 255</p>
<p>10.5 The microbiology of terrestrial human decomposition, 258</p>
<p>10.6 Is there a universal decomposition signature?, 263</p>
<p>10.7 Using microbial signatures to estimate PMI, 264</p>
<p>11 Arthropod microbe interactions on vertebrate remains: Potential applications in the forensic sciences, 274<br />Jeffery K. Tomberlin, M. Eric Benbow, Kate M. Barnes and Heather R. Jordan</p>
<p>11.1 Introduction, 274</p>
<p>11.2 Framework for understanding microbe arthropod interactions on vertebrate remains, 282</p>
<p>11.3 Postcolonization interval, 287</p>
<p>11.4 Future directions and conclusion, 297</p>
<p>11.5 Acknowledgments, 298</p>
<p>12 Microbes, anthropology, and bones, 312<br />Franklin E. Damann and Miranda M.E. Jans</p>
<p>12.1 Introduction, 312</p>
<p>12.2 Bone microstructure, 313</p>
<p>12.3 Microbially mediated decomposition, 315</p>
<p>12.4 Bone bioerosion, 317</p>
<p>12.5 Reconstructing postmortem histories, 322</p>
<p>13 Forensic microbiology in built environments, 328<br />Simon Lax and Jack A. Gilbert</p>
<p>13.1 Introduction, 328</p>
<p>13.2 The human skin microbiome, 328</p>
<p>13.3 The microbiota of the built environment, 329</p>
<p>13.4 Tools for the forensic classification of the built environment microbiome, 332</p>
<p>13.5 Forensic microbiology of the built environment, 335</p>
<p>14 Soil bacteria as trace evidence, 339<br />David R. Foran, Ellen M. Jesmok and James M. Hopkins</p>
<p>14.1 The forensic analysis of soil, 339</p>
<p>14.2 Assessing the biological components of soil, 340</p>
<p>14.3 Bacteria in soil, 341</p>
<p>14.4 Molecular techniques for the forensic analysis of soil, 342</p>
<p>14.5 Soil microbial profile data analysis methods, 345</p>
<p>14.6 Feasibility of next ]generation sequencing for forensic soil analysis, 350</p>
<p>14.7 Consensus on methodologies for soil collection and analysis, 353</p>
<p>15 DNA profiling of bacteria from human hair: Potential and pitfalls, 358<br />Silvana R. Tridico, Dáithí C. Murray, Michael Bunce and K. Paul Kirkbride</p>
<p>15.1 An introduction to human hair as a forensic substrate, 358</p>
<p>15.2 Current research into hair microbiomes, 361</p>
<p>15.3 Importance of hair sample collection, storage, and isolation of microbial DNA, 365</p>
<p>15.4 DNA sequencing of hair microbiomes, 367</p>
<p>15.5 Conclusions and future directions, 369</p>
<p>Perspectives on the future of forensic microbiology, 376<br />David O. Carter, Jeffery K. Tomberlin, M. Eric Benbow and Jessica L. Metcalf</p>
<p>Index, 379</p>