Sugarcane–based Biofuels and Bioproducts

Specificaties
Gebonden, 408 blz. | Engels
John Wiley & Sons | e druk, 2016
ISBN13: 9781118719916
Rubricering
John Wiley & Sons e druk, 2016 9781118719916
Verwachte levertijd ongeveer 15 werkdagen

Samenvatting

Sugarcane has garnered much interest for its potential as a viable renewable energy crop. While the use of sugar juice for ethanol production has been in practice for years, a new focus on using the fibrous co–product known as bagasse for producing renewable fuels and bio–based chemicals is growing in interest. The success of these efforts, and the development of new varieties of energy canes, could greatly increase the use of sugarcane and sugarcane biomass for fuels while enhancing industry sustainability and competitiveness.

Sugarcane–Based Biofuels and Bioproducts examines the development of a suite of established and developing biofuels and other renewable products derived from sugarcane and sugarcane–based co–products, such as bagasse. Chapters provide broad–ranging coverage of sugarcane biology, biotechnological advances, and breakthroughs in production and processing techniques. This text brings together essential information regarding the development and utilization of new fuels and bioproducts derived from sugarcane. Authored by experts in the field, Sugarc
ane–Based Biofuels and Bioproducts is an invaluable resource for researchers studying biofuels, sugarcane, and plant biotechnology as well as sugar and biofuels industry personnel. 

Specificaties

ISBN13:9781118719916
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:408

Inhoudsopgave

<p>Preface, xiii</p>
<p>List of contributors, xv</p>
<p>Part I Sugarcane for biofuels and bioproducts</p>
<p>1 The sugarcane industry, biofuel, and bioproduct perspectives, 3<br />Ian M. O Hara</p>
<p>1.1 Sugarcane a global bioindustrial crop, 3</p>
<p>1.2 The global sugarcane industry, 5</p>
<p>1.2.1 Sugarcane, 5</p>
<p>1.2.2 Sugarcane harvesting and transport, 6</p>
<p>1.2.3 The raw sugar production process, 7</p>
<p>1.2.4 The refined sugar production process, 9</p>
<p>1.2.5 The sugar market, 11</p>
<p>1.3 Why biofuels and bioproducts?, 11</p>
<p>1.3.1 The search for new revenue, 11</p>
<p>1.3.2 Sugar, ethanol, and cogeneration, 12</p>
<p>1.3.3 Fiber–based biofuels and bioproducts, 13</p>
<p>1.3.4 Climate change and renewable products, 13</p>
<p>1.3.5 New industries for sustainable regional communities, 14</p>
<p>1.4 Sugarcane biorefinery perspectives, 14</p>
<p>1.4.1 The sugarcane biorefinery, 14</p>
<p>1.4.2 The sustainability imperative, 17</p>
<p>1.4.3 Future developments in biotechnology for sugarcane biorefineries, 18</p>
<p>1.5 Concluding remarks, 19</p>
<p>References, 20</p>
<p>2 Sugarcane biotechnology: tapping unlimited potential, 23<br />Sudipta S. Das Bhowmik, Anthony K. Brinin, Brett Williams and Sagadevan G. Mundree</p>
<p>2.1 Introduction, 23</p>
<p>2.2 History of sugarcane, sugarcane genetics, wild varieties, 24</p>
<p>2.3 Uses of sugarcane, 25</p>
<p>2.3.1 Food and beverages, 25</p>
<p>2.3.2 Biofuels and bioenergy, 26</p>
<p>2.3.3 Fibers and textiles, 26</p>
<p>2.3.4 Value–added products, 26</p>
<p>2.4 Sugarcane biotechnology, 26</p>
<p>2.4.1 Limitations of sugarcane biotechnology, 29</p>
<p>2.5 Improvement of sugarcane breeding versus genetic modification through biotechnology, 29</p>
<p>2.6 Genetic modification of sugarcane, 30</p>
<p>2.7 Paucity of high–quality promoters, 32</p>
<p>2.8 Opportunities for GM–improved sugarcane, 32</p>
<p>2.9 Improved stress tolerance and disease resistance, 35</p>
<p>2.9.1 Stress tolerance, 35</p>
<p>2.9.2 Drought, 35</p>
<p>2.9.3 Salinity, 35</p>
<p>2.10 Naturally resilient plants as a novel genetic source for stress tolerance, 36</p>
<p>2.11 Disease resistance, 37</p>
<p>2.12 Industrial application of sugarcane, 39</p>
<p>2.13 How will climate change and expanded growing–region affect vulnerability to pathogens?, 40</p>
<p>2.14 Conclusion and perspectives, 41</p>
<p>References, 42</p>
<p>Part II Biofuels and bioproducts</p>
<p>3 Fermentation of sugarcane juice and molasses for ethanol production, 55<br />Cec&iacute;lia Laluce, Guilherme R. Leite, Bruna Z. Zavitoski, Thamires T. Zamai</p>
<p>and Ricardo Ventura</p>
<p>3.1 Introduction, 55</p>
<p>3.2 Natural microbial ecology, 56</p>
<p>3.2.1 Saccharomyces yeasts, 56</p>
<p>3.2.2 Wild yeasts, 58</p>
<p>3.2.3 Bacterial contaminants, 58</p>
<p>3.3 Yeast identification, 60</p>
<p>3.3.1 Identification of genetic and physiological phenotypes, 60</p>
<p>3.3.2 Molecular identification methods, 61</p>
<p>3.4 Cell surface and cell cell interactions, 62</p>
<p>3.4.1 Dissolved air flotation, 62</p>
<p>3.4.2 Flocculation, 64</p>
<p>3.4.3 Biofilms, 65</p>
<p>3.5 Sugarcane juice and bagasse, 65</p>
<p>3.5.1 Harvesting of the sugarcane, 65</p>
<p>3.5.2 Reception and cleaning of sugarcane, 66</p>
<p>3.5.3 Juice extraction, 66</p>
<p>3.5.4 Juice clarification, 66</p>
<p>3.5.5 Juice concentration, 66</p>
<p>3.5.6 Quality of clarified juice, 67</p>
<p>3.6 Fermentation of juice and molasses, 67</p>
<p>3.6.1 Starters yeasts, 67</p>
<p>3.6.2 Raw materials used in fermentation, 67</p>
<p>3.6.3 The fermentation, 68</p>
<p>3.7 Cogeneration of energy from bagasse, 68</p>
<p>3.8 Bioreactors and processes, 69</p>
<p>3.8.1 Batch fermentation, 70</p>
<p>3.8.2 Fed–batch fermentation, 70</p>
<p>3.8.3 Multistage Stage Continuous Fermentation (MSCF) system, 72</p>
<p>3.9 Control of microbial infections, 73</p>
<p>3.10 Monitoring and controlling processes, 74</p>
<p>3.11 Concluding remarks and perspective, 76</p>
<p>Acknowledgments, 77</p>
<p>References, 77</p>
<p>4 Production of fermentable sugars from sugarcane bagasse, 87<br />Zhanying Zhang, Mark D. Harrison and Ian M. O Hara</p>
<p>4.1 Introduction, 87</p>
<p>4.2 Bioethanol from bagasse, 88</p>
<p>4.3 Overview of pretreatment technologies, 90</p>
<p>4.4 Pretreatment of bagasse, 91</p>
<p>4.4.1 Dilute acid pretreatment, 91</p>
<p>4.4.2 Alkaline pretreatment, 92</p>
<p>4.4.3 Liquid hot water pretreatment, 93</p>
<p>4.4.4 Organosolv pretreatment, 94</p>
<p>4.4.5 Ionic liquid pretreatment, 97</p>
<p>4.4.6 SO2– and CO2–associated pretreatments, 98</p>
<p>4.5 Enzymatic hydrolysis, 99</p>
<p>4.6 Fermentation, 100</p>
<p>4.7 Conclusions and future perspectives, 102</p>
<p>References, 103</p>
<p>5 Chemicals manufacture from fermentation of sugarcane products, 111<br />Karen T. Robins and Robert E. Speight</p>
<p>5.1 Introduction, 111</p>
<p>5.2 The suitability of sugarcane–derived feedstocks in industrial fermentation processes, 114</p>
<p>5.2.1 Competing current applications of sugarcane products, 115</p>
<p>5.2.2 Use of sugarcane products in fermentations, 117</p>
<p>5.3 Metabolism and industrial host strains, 121</p>
<p>5.3.1 Metabolism of sucrose, 121</p>
<p>5.3.2 Metabolism of lignocellulose–derived sugars, 124</p>
<p>5.3.3 Optimization of strains and metabolism, 126</p>
<p>5.4 Bioprocess considerations, 127</p>
<p>5.5 Sugarcane–derived chemical products, 130</p>
<p>5.6 Summary, 132</p>
<p>References, 133</p>
<p>6 Mathematical modeling of xylose production from hydrolysis of sugarcane bagasse, 137<br />Ava Greenwood, Troy Farrell and Ian M. O Hara</p>
<p>6.1 Introduction, 137</p>
<p>6.2 Mathematical models of hemicellulose acid pretreatment, 139</p>
<p>6.2.1 Kinetic models of hemicellulose acid hydrolysis, 139</p>
<p>6.2.2 The Saeman kinetic model, 139</p>
<p>6.2.3 The biphasic model, 140</p>
<p>6.2.4 The polymer degradation equation, 143</p>
<p>6.2.5 Other mathematical considerations and models of hemicellulose acid hydrolysis, 146</p>
<p>6.3 A mathematical model of sugarcane bagasse dilute–acid hydrolysis, 150</p>
<p>6.4 Sensitivity analysis, 153</p>
<p>6.4.1 Experimental solids loadings and fitting the hard–to–hydrolyze parameter, 155</p>
<p>6.4.2 Hemicellulose chain length characteristics and the parameter fitting of ka and kb, 156</p>
<p>6.5 Conclusions, 159</p>
<p>References, 160</p>
<p>7 Hydrothermal liquefaction of lignin, 165<br />Kameron G. Dunn and Philip A. Hobson</p>
<p>7.1 Introduction, 165</p>
<p>7.2 A review of lignin alkaline hydrolysis research, 170</p>
<p>7.3 Hydrolysis in subcritical and supercritical water without an alkali base, 186</p>
<p>7.4 Solvolysis with hydrogen donor solvent formic acid, 188</p>
<p>7.5 Reported depolymerization pathways of lignin and lignin model compounds, 192</p>
<p>7.6 The solid residue product, 194</p>
<p>7.7 Summary strategies to increase yields of monophenols, 195</p>
<p>7.7.1 Reaction temperature, 200</p>
<p>7.7.2 Reaction pressure, 201</p>
<p>7.7.3 Reaction time, 201</p>
<p>7.7.4 Lignin loading, 202</p>
<p>7.7.5 Alkali molarity, 202</p>
<p>7.7.6 Monomer separation, 202</p>
<p>7.7.7 Lignin structure, 202</p>
<p>References, 203</p>
<p>8 Conversion of sugarcane carbohydrates into platform chemicals, 207<br />Darryn W. Rackemann, Zhanying Zhang and William O.S. Doherty</p>
<p>8.1 Introduction, 207</p>
<p>8.1.1 Bagasse, 208</p>
<p>8.1.2 Biorefining, 208</p>
<p>8.2 Platform chemicals, 210</p>
<p>8.2.1 Furans, 212</p>
<p>8.2.2 Furfural, 212</p>
<p>8.2.3 HMF, 214</p>
<p>8.3 Organic acids, 214</p>
<p>8.3.1 Levulinic acid, 214</p>
<p>8.3.2 Formic acid, 218</p>
<p>8.4 Value of potential hydrolysis products, 218</p>
<p>8.5 Current technology for manufacture of furans and levulinic acid, 220</p>
<p>8.6 Technology improvements, 222</p>
<p>8.7 Catalysts, 223</p>
<p>8.7.1 Homogeneous catalysts, 223</p>
<p>8.7.2 Heterogeneous catalysts, 224</p>
<p>8.7.3 Levulinic acid, 224</p>
<p>8.8 Solvolysis, 226</p>
<p>8.9 Other product chemicals, 228</p>
<p>8.9.1 Esters, 228</p>
<p>8.9.2 Ketals, 228</p>
<p>8.9.3 Chloromethylfurfural, 229</p>
<p>8.9.4 GVL, 229</p>
<p>8.10 Concluding remarks, 230</p>
<p>References, 231</p>
<p>9 Cogeneration of sugarcane bagasse for renewable energy production, 237<br />Anthony P. Mann</p>
<p>9.1 Introduction, 237</p>
<p>9.2 Background, 238</p>
<p>9.3 Sugar factory processes without large–scale cogeneration, 243</p>
<p>9.4 Sugar factory processes with large–scale cogeneration, 249</p>
<p>9.4.1 Reducing LP steam heating requirements, 249</p>
<p>9.4.2 Reducing boiler station losses, 251</p>
<p>9.4.3 Increasing power generation efficiency, 253</p>
<p>9.4.4 A sugar factory cogeneration steam cycle, 254</p>
<p>9.5 Conclusions, 256</p>
<p>References, 257</p>
<p>10 Pulp and paper production from sugarcane bagasse, 259<br />Thomas J. Rainey and Geoff Covey</p>
<p>10.1 Background, 259</p>
<p>10.2 History of bagasse in the pulp and paper industry, 260</p>
<p>10.3 Depithing, 260</p>
<p>10.3.1 The need for depithing, 260</p>
<p>10.3.2 Depithing operation, 262</p>
<p>10.3.3 Character of pith, depithed bagasse, and whole bagasse, 264</p>
<p>10.3.4 Combustion of pith, 264</p>
<p>10.4 Storage of bagasse for papermaking, 266</p>
<p>10.5 Chemical pulping and bleaching of bagasse, 268</p>
<p>10.5.1 Digestion, 268</p>
<p>10.5.2 Black liquor, 269</p>
<p>10.5.3 Bleaching, 270</p>
<p>10.6 Mechanical and chemi–mechanical pulping, 271</p>
<p>10.7 Papermaking, 272</p>
<p>10.7.1 Fiber morphology, 272</p>
<p>10.7.2 Suitability of bagasse for various paper grades, 273</p>
<p>10.7.3 Physical properties, 274</p>
<p>10.7.4 Effect of pith on paper production, 275</p>
<p>10.8 Alternate uses of bagasse pulp, 276</p>
<p>References, 277</p>
<p>11 Sugarcane–derived animal feed, 281<br />Mark D. Harrison</p>
<p>11.1 Introduction, 281</p>
<p>11.1.1 The anatomy of the sugarcane plant, 282</p>
<p>11.1.2 Sugarcane production, processing, and sugar refining, 282</p>
<p>11.1.3 Scope of the chapter, 284</p>
<p>11.2 Crop residues and processing products, 285</p>
<p>11.2.1 Whole sugarcane, 285</p>
<p>11.2.2 Tops and trash, 286</p>
<p>11.2.3 Bagasse, 288</p>
<p>11.2.4 Molasses, 288</p>
<p>11.2.5 Sugarcane juice, 290</p>
<p>11.3 Processing sugarcane residues to enhance their value in animal feed, 290</p>
<p>11.3.1 Ensilage/microbial conditioning, 291</p>
<p>11.3.2 Chemical conditioning, 293</p>
<p>11.3.3 Physical processing (baling, pelletization, depithing), 296</p>
<p>11.3.4 Pretreatment, 296</p>
<p>11.4 Conclusions, 300</p>
<p>References, 300</p>
<p>Part III Systems and sustainability</p>
<p>12 Integrated first– and second–generation processes for bioethanol production from sugarcane, 313<br />Marina O. de Souza Dias, Ot&aacute;vio Cavalett, Rubens M. Filho and Antonio Bonomi</p>
<p>12.1 Introduction, 313</p>
<p>12.2 Process descriptions, 315</p>
<p>12.2.1 First–generation ethanol production, 315</p>
<p>12.2.2 Second–generation ethanol production, 317</p>
<p>12.2.3 Cogeneration in integrated first– and second–generation ethanol production from sugarcane, 320</p>
<p>12.2.4 Some aspects of the process integration, 321</p>
<p>12.3 Economic aspects of first– and second–generation ethanol production, 323</p>
<p>12.4 Environmental aspects of first– and second–generation ethanol production, 325</p>
<p>12.5 Final remarks, 328</p>
<p>References, 328</p>
<p>13 Greenhouse gas abatement from sugarcane bioenergy, biofuels, and biomaterials, 333<br />Marguerite A. Renouf</p>
<p>13.1 Introduction, 333</p>
<p>13.2 Life cycle assessment (LCA) of sugarcane systems, 335</p>
<p>13.2.1 Overview of LCA and carbon footprinting, 335</p>
<p>13.2.2 Past LCA and carbon footprint studies of sugarcane bioproducts, 337</p>
<p>13.3 Greenhouse gas/carbon footprint profile of sugarcane bioproducts, 339</p>
<p>13.3.1 Land use change, 339</p>
<p>13.3.2 Sugarcane production, 340</p>
<p>13.3.3 Sugarcane biorefining, 342</p>
<p>13.3.4 Downstream phases, 343</p>
<p>13.4 Greenhouse gas (GHG) abatement from sugarcane products, 343</p>
<p>13.4.1 Comparing sugarcane products with fossil fuel products, 343</p>
<p>13.4.2 Influence of land–use change, 344</p>
<p>13.4.3 Comparing sugarcane with other biomass feedstock, 345</p>
<p>13.4.4 Attributes for GHG abatement, 348</p>
<p>13.5 Environmental trade–offs, 349</p>
<p>13.5.1 Land use and associated environmental services, 349</p>
<p>13.5.2 Water use, 350</p>
<p>13.5.3 Water quality, 350</p>
<p>13.5.4 Phosphorus depletion, 351</p>
<p>13.5.5 Balancing the GHG abatement benefits with the environmental trade–offs, 351</p>
<p>13.6 Production pathways that optimize GHG abatement, 352</p>
<p>13.6.1 Production basis (dedicated vs. coproduction), 352</p>
<p>13.6.2 Product outputs, 352</p>
<p>13.6.3 Land used, 354</p>
<p>13.7 Opportunities for further optimizing GHG abatement, 354</p>
<p>13.7.1 Ecoefficient sugarcane growing, 354</p>
<p>13.7.2 Utilization of harvest residues, 355</p>
<p>13.7.3 New sugarcane varieties, 355</p>
<p>13.8 Summary, 355</p>
<p>References, 356</p>
<p>14 Environmental sustainability assessment of sugarcane bioenergy, 363<br />Shabbir H. Gheewala, S&eacute;bastien Bonnet and Thapat Silalertruksa</p>
<p>14.1 Bioenergy and the sustainability challenge, 363</p>
<p>14.2 Prospect of sugarcane bioenergy, 364</p>
<p>14.3 Environmental sustainability assessment tools, 365</p>
<p>14.4 Environmental sustainability assessment of sugarcane bioenergy: Case of Thailand, 366</p>
<p>14.4.1 Background and policy context, 366</p>
<p>14.4.2 Sugarcane farming and production system, 366</p>
<p>14.4.3 Sugarcane farming and harvesting, 367</p>
<p>14.4.4 Sugarcane milling, 367</p>
<p>14.4.5 Ethanol conversion, 368</p>
<p>14.4.6 Transport, 368</p>
<p>14.5 Net energy balance and net energy ratio, 369</p>
<p>14.6 Life cycle environmental impacts, 369</p>
<p>14.7 Key environmental considerations for promoting sugarcane bioenergy, 372</p>
<p>References, 376</p>
<p>Index, 379</p>

Rubrieken

    Personen

      Trefwoorden

        Sugarcane–based Biofuels and Bioproducts