,

The Finite Element Method in Electromagnetics Third Edition

Specificaties
Gebonden, 876 blz. | Engels
John Wiley & Sons | 3e druk, 2014
ISBN13: 9781118571361
Rubricering
John Wiley & Sons 3e druk, 2014 9781118571361
Onderdeel van serie Wiley – IEEE
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics

The finite element method (FEM) is a powerful simulation technique used to solve boundary–value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high–speed/high–frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration.

The Finite Element Method in Electromagnetics, Third Edition explains the method s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems.

Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes:

A wider range of applications, including antennas, phased arrays, electric machines, high–frequency circuits, and crystal photonics
The finite element analysis of wave propagation, scattering, and radiation in periodic structures
The time–domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena
Novel domain decomposition techniques for parallel computation and efficient simulation of large–scale problems, such as phased–array antennas and photonic crystals

Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Specificaties

ISBN13:9781118571361
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:876
Druk:3

Inhoudsopgave

Preface xix
<p>Preface to the First Edition xxiii</p>
<p>Preface to the Second Edition xxvii</p>
<p>1 Basic Electromagnetic Theory 1</p>
<p>1.1 Brief Review of Vector Analysis 2</p>
<p>1.2 Maxwell′s Equations 4</p>
<p>1.3 Scalar and Vector Potentials 6</p>
<p>1.4 Wave Equations 7</p>
<p>1.5 Boundary Conditions 8</p>
<p>1.6 Radiation Conditions 11</p>
<p>1.7 Fields in an Infinite Homogeneous Medium 11</p>
<p>1.8 Huygen′s Principle 13</p>
<p>1.9 Radar Cross Sections 14</p>
<p>1.10 Summary 15</p>
<p>2 Introduction to the Finite Element Method 17</p>
<p>2.1 Classical Methods for Boundary–Value Problems 17</p>
<p>2.2 Simple Example 21</p>
<p>2.3 Basic Steps of the Finite Element Method 27</p>
<p>2.4 Alternative Presentation of the Finite Element Formulation 34</p>
<p>2.5 Summary 36</p>
<p>3 One–Dimensional Finite Element Analysis 39</p>
<p>3.1 Boundary–Value Problem 39</p>
<p>3.2 Variational Formulation 40</p>
<p>3.3 Finite Element Analysis 42</p>
<p>3.4 Plane–Wave Reflection by a Metal–Backed Dielectric Slab 53</p>
<p>3.5 Scattering by a Smooth, Convex Impedance Cylinder 59</p>
<p>3.6 Higher–Order Elements 62</p>
<p>3.7 Summary 74</p>
<p>4 Two–Dimensional Finite Element Analysis 77</p>
<p>4.1 Boundary–Value Problem 77</p>
<p>4.2 Variational Formulation 79</p>
<p>4.3 Finite Element Analysis 81</p>
<p>4.4 Application to Electrostatic Problems 98</p>
<p>4.5 Application to Magnetostatic Problems 103</p>
<p>4.6 Application to Quasistatic Problems: Analysis of Multiconductor Transmission Lines 105</p>
<p>4.7 Application to Time–Harmonic Problems 109</p>
<p>4.8 Higher–Order Elements 128</p>
<p>4.9 Isoparametric Elements 144</p>
<p>4.10 Summary 149</p>
<p>5 Three–Dimensional Finite Element Analysis 151</p>
<p>5.1 Boundary–Value Problem 151</p>
<p>5.2 Variational Formulation 152</p>
<p>5.3 Finite Element Analysis 153</p>
<p>5.4 Higher–Order Elements 160</p>
<p>5.5 Isoparametric Elements 162</p>
<p>5.6 Application to Electrostatic Problems 168</p>
<p>5.7 Application to Magnetostatic Problems 169</p>
<p>5.8 Application to Time–Harmonic Field Problems 176</p>
<p>5.9 Summary 188</p>
<p>6 Variational Principles for Electromagnetics 191</p>
<p>6.1 Standard Variational Principle 192</p>
<p>6.2 Modified Variational Principle 197</p>
<p>6.3 Generalized Variational Principle 201</p>
<p>6.4 Variational Principle for Anisotrpic Medium 203</p>
<p>6.5 Variational Principle for Resistive Sheets 207</p>
<p>6.6 Concluding Remarks 209</p>
<p>7 Eigenvalue Problems: Waveguides and Cavities 211</p>
<p>7.1 Scalar Formulations for Closed Waveguides 212</p>
<p>7.2 Vector Formulations for Closed Waveguides 225</p>
<p>7.3 Open Waveguides 235</p>
<p>7.4 Three–Dimensional Cavities 238</p>
<p>7.5 Summary 239</p>
<p>8 Vector Finite Elements 243</p>
<p>8.1 Two–Dimensional Edge Elements 244</p>
<p>8.2 Waveguide Problem Revisited 256</p>
<p>8.3 Three–Dimensional Edge Elements 259</p>
<p>8.4 Cavity Problem Revisited 270</p>
<p>8.5 Waveguide Discontinuities 274</p>
<p>8.6 Higher–Order Interpolatory Vector Elements 278</p>
<p>8.7 Higher–Order Hierarchical Vector Elements 293</p>
<p>8.8 Computational Issues 305</p>
<p>8.9 Summary 309</p>
<p>9 Absorbing Boundary Conditions 315</p>
<p>9.1 Two–Dimensional Absorbing Boundary Conditions 316</p>
<p>9.2 Three–Dimensional Absorbing Boundary Conditions 323</p>
<p>9.3 Scattering Analysis Using Absorbing Boundary Conditons 328</p>
<p>9.4 Adaptive Absorbing Boundary Conditons 339</p>
<p>9.5 Fictitious Absorbers 348</p>
<p>9.6 Perfectly Matched Layers 350</p>
<p>9.7 Application of PML to Body–of–Revolutions Problems 368</p>
<p>9.8 Summary 371</p>
<p>10 Finite Element–Boundary Integral Methods 379</p>
<p>10.1 Scattering by Two–Dimensional Cavity–Backed Apertures 381</p>
<p>10.2 Scattering by Two–Dimensional Cylindrical Structures 399</p>
<p>10.3 Scattering by Three–Dimensional Cavity–Backed Apertures 411</p>
<p>10.4 Radiation by Microstrip Patch Antennas in a Cavity 425</p>
<p>10.5 Scattering by General Three–Dimensional Bodies 430</p>
<p>10.6 Solution of the Finite Element–Boundary Integral System 436</p>
<p>10.7 Symmetric Finite Element–Boundary Integral Formulations 447</p>
<p>10.8 Summary 462</p>
<p>11 Finite Element–Eigenfunction Expansion Methods 469</p>
<p>11.1 Waveguide Port Boundary Conditions 470</p>
<p>11.2 Open–Region Scattering 487</p>
<p>11.3 Coupled Basis Functions: The Unimoment Method 494</p>
<p>11.4 Finite Element–Extended Boundary Condition Method 502</p>
<p>11.5 Summary 509</p>
<p>12 Finite Element Analysis in the Time Domain 513</p>
<p>12.1 Finite Element Formulation and Temporal Excitation 514</p>
<p>12.2 Time–Domain Discretization 518</p>
<p>12.3 Stability Analysis 523</p>
<p>12.4 Modeling of Dispersive Media 529</p>
<p>12.5 Truncation via Absorbing Boundary Conditions 538</p>
<p>12.6 Truncation via Perfectly Matched Layers 541</p>
<p>12.7 Truncation via Boundary Integral Equations 551</p>
<p>12.8 Time–Domain Wqaveguide Port Boundary Conditions 562</p>
<p>12.9 Hybrid Field–Circuit Analysis 569</p>
<p>12.10 Dual–Field Domain Decomposition and Element–Level Methods 587</p>
<p>12.11 Discontinuous Galerkin Time–Domain Methods 605</p>
<p>12.12 Summary 625</p>
<p>13 Finite Element Analysis of Periodic Structures 637</p>
<p>13.1 Finite Element Formulation for a Unit Cell 638</p>
<p>13.2 Scattering by One–Dimensional Periodic Structures: Frequency–Domain Analysis 651</p>
<p>13.3 Scattering by One–Dimensional Periodic Structures: Time–Domain Analysis 656</p>
<p>13.4 Scattering by Two–Dimensional Periodic Structures: Frequency–Domain Analysis 663</p>
<p>13.5 Scattering by Two–Dimensonal Periodic Structures: Time–Domain Analysis 670</p>
<p>13.6 Analysis of Angular Periodic Strctures 678</p>
<p>13.7 Summary 682</p>
<p>14 Domain Decompsition for Large–Scale Analysis 687</p>
<p>14.1 Schwarz Methods 688</p>
<p>14.2 Schur Complement Methods 693</p>
<p>14.3 FETI–DP Method for Low–Frequency Problems 705</p>
<p>14.4 FETI–DP Method for High–Frequency Problems 728</p>
<p>14.5 Noncomformal FETI–DP Method Based on Cement Elements 743</p>
<p>14.6 Application of Second–Order Transmission Conditions 753</p>
<p>14.7 Summary 760</p>
<p>15 Solution of Finite Element Equations 767</p>
<p>15.1 Decomposition Methods 769</p>
<p>15.2 Conjugate Gradient Methods 778</p>
<p>15.3 Solution of Eigenvalue Problems 791</p>
<p>15.4 Fast Frequency–Sweep Computation 797</p>
<p>15.5 Summary 803</p>
<p>Appendix A: Basic Vector Identities and Integral Theorems 809</p>
<p>Appendix B: The Ritz Procedure for Complex–Valued Problems 813</p>
<p>Appendix C: Green′s Functions 817</p>
<p>Appendix D: Singular Integral Evaluation 825</p>
<p>Appendix E: Some Special Functions 829</p>
<p>Index 837</p>

Rubrieken

    Personen

      Trefwoorden

        The Finite Element Method in Electromagnetics Third Edition