Advances in Contact Angle, Wettability and Adhesion V1

Specificaties
Gebonden, 440 blz. | Engels
John Wiley & Sons | 0e druk, 2013
ISBN13: 9781118472927
Rubricering
John Wiley & Sons 0e druk, 2013 9781118472927
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

The topic of wettabilty is extremely important from both fundamental and applied aspects. The applications of wettability range from self–cleaning windows to micro– and nanofluidics.

This book represents the cumulative wisdom of a contingent of world–class (researchers engaged in the domain of wettability. In the last few years there has been tremendous interest in the "Lotus Leaf Effect" and in understanding its mechanism and how to replicate this effect for myriad applications. The topics of superhydrophobicity, omniphobicity and superhydrophilicity are of much contemporary interest and these are covered in depth in this book.

Specificaties

ISBN13:9781118472927
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:440
Druk:0

Inhoudsopgave

<p>Preface xvii</p>
<p>Acknowledgements xxi</p>
<p>Part 1: Fundamental Aspects 1</p>
<p>1 Correlation between Contact Line Pinning and Contact Angle Hysteresis on Heterogeneous Surfaces: A Review and Discussion 3<br /> Mohammad Amin Sarshar, Wei Xu, and Chang–Hwan Choi</p>
<p>1.1 Introduction 3</p>
<p>1.2 Contact Line Pinning on Chemically Heterogeneous Flat Surfaces 4</p>
<p>1.3 Contact Line Pinning on Hydrophobic Structured Surfaces 7</p>
<p>1.4 Summary and Conclusion 14</p>
<p>2 Computational and Experimental Study of Contact Angle Hysteresis in Multiphase Systems 19<br /> Vahid Mortazavi, Vahid Hejazi, Roshan M D′Souza, and Michael Nosonovsky</p>
<p>2.1 Introduction 19</p>
<p>2.2 Origins of the CA Hysteresis 24</p>
<p>2.3 Modeling Wetting/Dewetting in Multiphase Systems 27</p>
<p>2.4 Experimental Observations 30</p>
<p>2.5 Numerical Modeling of CA Hysteresis 35</p>
<p>2.6 Conclusions 44</p>
<p>3 Heterogeneous Nucleation on a Completely Wettable Substrate 49<br /> Masao Iwamatsu</p>
<p>3.1 Introduction 49</p>
<p>3.2 Interface–Displacement Model 51</p>
<p>3.3 Nucleation on a Completely–Wettable Flat Substrate 54</p>
<p>3.4 Nucleation on a Completely–Wettable Spherical Substrate 65</p>
<p>3.5 Conclusion 69</p>
<p>4 Local Wetting at Contact Line on Textured Hydrophobic Surfaces 73<br /> Ri Li and Yanguang Shan</p>
<p>4.1 Introduction 73</p>
<p>4.2 Static Contact Angle 76</p>
<p>4.3 Wetting of Single Texture Element 80</p>
<p>4.4 Summary 85</p>
<p>5 Fundamental Understanding of Drops Wettability Behavior Theoretically and Experimentally 87<br /> Hartmann E. N guessan, Robert White, Aisha Leh, Arnab Baksi, and Rafael Tadmor</p>
<p>5.1 Introduction 87</p>
<p>5.2 Discussion 90</p>
<p>5.3 Conclusion 93</p>
<p>6 Hierarchical Structures Obtained by Breath Figures Self–Assembly and Chemical Etching and their Wetting Properties 97<br /> Edward Bormashenko, Sagi Balter, Roman Grynyov, and Doron Aurbach</p>
<p>6.1 Introduction 97</p>
<p>6.2 Materials and Methods 98</p>
<p>6.3 Results and Discussion 100</p>
<p>6.4 Conclusions 105</p>
<p>7 Computational Aspects of Self–Cleaning Surface Mechanisms 109<br /> Muhammad Osman, Raheel Rasool, and Roger A. Sauer</p>
<p>7.1 Introduction 109</p>
<p>7.2 Droplet Membrane 111</p>
<p>7.3 Flow Model 121</p>
<p>7.4 Results 126</p>
<p>7.5 Summary 129</p>
<p>8 Study of Material Water Interactions Using the Wilhelmy Plate Method 131<br /> Eric Tomasetti, Sylvie Derclaye, Mary–H&eacute;l&egrave;ne Delvaux, and Paul G. Rouxhet</p>
<p>8.1 Introduction 132</p>
<p>8.2 Upgrading Wetting Curves 133</p>
<p>8.3 Study of Surface–Oxidized Polyethylene 136</p>
<p>8.4 Study of Amphiphilic UV–Cured Coatings 143</p>
<p>8.5 Conclusion 151</p>
<p>9 On the Utility of Imaginary Contact Angles in the Characterization of Wettability of Rough Medicinal Hydrophilic Titanium 155<br /> S. L&uuml;ers, C. Seitz, M. Laub, and H.P. Jennissen</p>
<p>9.1 Introduction 156</p>
<p>9.2 Theoretical Considerations 156</p>
<p>9.3 Materials and Methods 158</p>
<p>9.4 Results and Discussion 161</p>
<p>9.5 Conclusion 171</p>
<p>10 Determination of Surface Free Energy at the Nanoscale via Atomic Force Microscopy without Altering the Original Morphology 173<br /> L. Mazzola and A. Galderisi</p>
<p>10.1 Introduction 174</p>
<p>10.2 Materials and Methods 175</p>
<p>10.3 Results and Discussion 180</p>
<p>10.4 Conclusion 188</p>
<p>Part 2: Superhydrophobic Surfaces 191</p>
<p>11 Assessment Criteria for Superhydrophobic Surfaces with Stochastic Roughness 193<br /> Angela Duparr&eacute; and Luisa Coriand</p>
<p>11.1 Introduction 193</p>
<p>11.2 Model and Experiments 194</p>
<p>11.3 Results and Discussion 197</p>
<p>11.4 Summary 200</p>
<p>12 Nanostructured Lubricated Silver Flake/Polymer Composites Exhibiting Robust Superhydrophobicity 203<br /> Ilker S. Bayer, Luigi Martiradonna, and Athanassia Athanassiou</p>
<p>12.1 Introduction 204</p>
<p>12.2 Experimental 210</p>
<p>12.3 Results and Discussion 214</p>
<p>12.4 Conclusions 220</p>
<p>13 Local Wetting Modifi cation on Carnauba Wax–Coated Hierarchical Surfaces by Infrared Laser Treatment 227<br /> Athanasios Milionis, Roberta Ruffi lli, Ilker S. Bayer, Lorenzo Dominici, Despina Fragouli, and Athanassia Athanassiou</p>
<p>13.1 Introduction 228</p>
<p>13.2 Experimental 229</p>
<p>13.3 Results and Discussion 231</p>
<p>13.4 Conclusions 238</p>
<p>Part 3: Wettability Modifi cation 243</p>
<p>14 Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Rate of Plant Seeds 245<br /> Edward Bormashenko, Roman Grynyov, Yelena Bormashenko, and Elyashiv Drori</p>
<p>14.1 Introduction 245</p>
<p>14.2 Experimental 246</p>
<p>14.3 Results and Discussion 248</p>
<p>14.4 Conclusions 255</p>
<p>15 Controlling the Wettability of Acrylate Coatings with Photo–Induced Micro–Folding 259<br /> Thomas Bahners, Lutz Prager, and Jochen S. Gutmann</p>
<p>15.1 Introduction 260</p>
<p>15.2 The Process of Photo–induced Micro–folding 264</p>
<p>15.3 Experimental 265</p>
<p>15.4 Review of Results 267</p>
<p>15.5 Summary 274</p>
<p>16 Influence of Surface Densification of Wood on its Dynamic Wettability and Surface Free Energy 279<br /> M. Petric, A. Kutnar, L. Rautkari, K. Laine, and M. Hughes</p>
<p>16.1 Introduction 280</p>
<p>16.2 Experimental 281</p>
<p>16.3 Results and Discussion 284</p>
<p>16.4 Summary and Conclusions 294</p>
<p>17 Contact Angle on Two Canadian Woods: Influence of Moisture Content and Plane of Section 297<br /> Fabio Tomczak and Bernard Riedl</p>
<p>17.1 Introduction 297</p>
<p>17.2 Materials and Experimental Procedures 300</p>
<p>17.3 Results and Discussion 302</p>
<p>17.4 Conclusions 307</p>
<p>18 Plasma Deposition of ZnO Thin Film on Sugar Maple: The Effect on Contact Angle 311<br /> Fabio Tomczak, Bernard Riedl, and Pierre Blanchet</p>
<p>18.1 Introduction 312</p>
<p>18.2 Materials and Experimental Procedures 313</p>
<p>18.3 Results and Discussion 316</p>
<p>18.4 Conclusion 325</p>
<p>19 Effect of Relative Humidity on Contact Angle and its Hysteresis on Phospholipid DPPC Bilayer Deposited on Glass 329<br /> Emil Chibowski, Konrad Terpilowski, and Lucyna Holysz</p>
<p>19.1 Introduction 330</p>
<p>19.2 Experimental 331</p>
<p>19.3 Result and Discussion 333</p>
<p>19.4 Conclusion 343</p>
<p>Part 4: Wettability and Surface Free Energy 347</p>
<p>20 Contact Angles and Surface Energy of Solids: Relevance and Limitations 349<br /> Paul G. Rouxhet</p>
<p>20.1 Introduction 350</p>
<p>20.2 Thermodynamic Background 351</p>
<p>20.3 Determination of the Surface Energy of a Solid from Contact Angles 354</p>
<p>20.4 Wettability and Surface Composition of Polypropylene Modifi ed by Oxidation 364</p>
<p>20.5 Wettability and Surface Cleanliness of Inorganic Materials 368</p>
<p>20.6 Conclusion 371</p>
<p>21 Surface Free Energy and Wettability of Different Oil and Gas Reservoir Rocks 377<br /> Andrei S. Zelenev and Nathan Lett</p>
<p>21.1 Introduction 377</p>
<p>21.2 Experimental 379</p>
<p>21.3 Results and Discussion 381</p>
<p>21.4 Conclusions 386</p>
<p>22 Influence of Surface Free Energy and Wettability on Friction Coefficient between Tire and Road Surface in Wet Conditions 389<br /> L. Mazzola, A. Galderisi, G. Fortunato, V. Ciaravola, and M. Giustiniano</p>
<p>22.1 Introduction 390</p>
<p>22.2 Theoretical Basis of the New Model 391</p>
<p>22.3 Materials and Methods 398</p>
<p>22.4 Results and Discussion 402</p>
<p>22.5 Summary and Conclusions 408</p>
<p>Acknowledgement 409</p>
<p>References 409</p>

Rubrieken

    Personen

      Trefwoorden

        Advances in Contact Angle, Wettability and Adhesion V1