Energy Efficient Manufacturing – Theory and Applications
Theory and Applications
Samenvatting
Over the last several years, manufacturers have expressed increasing interest in reducing their energy consumption and have begun to search for opportunities to reduce their energy usage. In this book, the authors explore a variety of opportunities to reduce the energy footprint of manufacturing. These opportunities cover the entire spatial scale of the manufacturing enterprise: from unit process–oriented approaches to enterprise–level strategies. Each chapter examines some aspect of this spatial scale, and discusses and describes the opportunities that exist at that level. Case studies demonstrate how the opportunity may be acted on with practical guidance on how to respond to these opportunities.
Specificaties
Inhoudsopgave
<p>1 Introduction to Energy Efficient Manufacturing 1<br />Barbara S. Linke and John W. Sutherland</p>
<p>1.1 Energy Use Implications 2</p>
<p>1.2 Drivers and Solutions for Energy Efficiency 3</p>
<p>References 9</p>
<p>2 Operation Planning & Monitoring 11<br />Y.B. Guo</p>
<p>2.1 Unit Manufacturing Processes 11</p>
<p>2.2 Life Cycle Inventory (LCI) of Unit Manufacturing Process 13</p>
<p>2.3 Energy Consumption in Unit Manufacturing Process 16</p>
<p>2.3.1 Basic Concepts of Energy, Power, and Work 16</p>
<p>2.3.2 Framework of Energy Consumption 17</p>
<p>2.4 Operation Plan Relevance to Energy Consumption 19</p>
<p>2.5 Energy Accounting in Unit Manufacturing Processes 20</p>
<p>2.6 Processing Energy in Unit Manufacturing Process 21</p>
<p>2.6.1 Cases of Processing Energy Modeling 21</p>
<p>2.6.1.1 Forging 21</p>
<p>2.6.1.2 Orthogonal Cutting 22</p>
<p>2.6.1.3 Grinding 24</p>
<p>2.6.1.4 Specific Energy vs. MRR 25</p>
<p>2.6.2 Energy Measurement 26</p>
<p>2.7 Energy Reduction Opportunities 26</p>
<p>2.7.1 Shortening Process Chain by Hard Machining 28</p>
<p>2.7.2 Substitution of Process Steps 28</p>
<p>2.7.3 Hybrid processes 29</p>
<p>2.7.4 Adaptation of Cooling and Flushing Strategies 29</p>
<p>2.7.5 Remanufacturing 30</p>
<p>References 30</p>
<p>3 Materials Processing 33<br />Karl R. Haapala, Sundar V. Atre, Ravi Enneti, Ian C. Garretson, Hao Zhang</p>
<p>3.1 Steel 34</p>
<p>3.1.1 Steelmaking Technology 35</p>
<p>3.2 Aluminum 36</p>
<p>3.2.1 Aluminum Alloying 37</p>
<p>3.2.2 History of Aluminum Processing 37</p>
<p>3.2.3 Aluminum in Commerce 38</p>
<p>3.2.4 Aluminum Processing 41</p>
<p>3.2.5 Bayer Process 42</p>
<p>3.2.6 Preparation of Carbon 44</p>
<p>3.2.7 Hall–Heroult Electrolytic Process 44</p>
<p>3.3 Titanium 45</p>
<p>3.3.1 Titanium Alloying 46</p>
<p>3.3.2 History of Titanium Processing 47</p>
<p>3.3.3 Titanium in Commerce 48</p>
<p>3.3.4 Titanium Processing Methods 49</p>
<p>3.3.5 Sulfate Process 50</p>
<p>3.3.6 Chloride Process 51</p>
<p>3.3.7 Hunter Process and Kroll Process 51</p>
<p>3.3.8 Remelting Processes 52</p>
<p>3.3.9 Emerging Titanium Processing Technologies 52</p>
<p>3.4 Polymers 54</p>
<p>3.4.1 Life Cycle Environmental and Cost Assessment 59</p>
<p>3.4.2 An Application of Polymer–Powder Processes 59</p>
<p>References 61</p>
<p>4 Energy Reduction in Manufacturing via Incremental Forming and Surface Microtexturing 65<br />Jian Cao and Rajiv Malhotra</p>
<p>4.1 Incremental Forming 66</p>
<p>4.1.1 Conventional Forming Processes 66</p>
<p>4.1.2 Energy Reduction via Incremental Forming 71</p>
<p>4.1.3 Challenges in Incremental Forming 77</p>
<p>4.1.3.1 Toolpath Planning for Enhanced Geometric Accuracy and Process Flexibility 78</p>
<p>4.1.3.2 Formability Prediction and Deformation Mechanics 87</p>
<p>4.1.3.3 Process Innovation and Materials Capability in DSIF 94</p>
<p>4.1.3.4 Future Challenges in Incremental Forming 97</p>
<p>4.2 Surface Microtexturing 98</p>
<p>4.2.1 Energy Based Applications of Surface Microtexturing 99</p>
<p>4.2.1.1 Microtexturing for Friction Reduction 99</p>
<p>4.2.1.2 Microtexturing Methods 101</p>
<p>4.2.1.3 Future Work in Microtexturing 116</p>
<p>4.3 Summary 117</p>
<p>4.4 Acknowledgement 117</p>
<p>References 118</p>
<p>5 An Analysis of Energy Consumption and Energy Efficiency in Material Removal Processes 123<br />Tao Lu and I.S. Jawahir</p>
<p>5.1 Overview 123</p>
<p>5.2 Plant and workstation levels 125</p>
<p>5.3 Operation level 129</p>
<p>5.4 Process Optimization for Energy Consumption 134</p>
<p>5.4.1 Plant Level and Workstation Level 134</p>
<p>5.4.2 Operation Level 136</p>
<p>5.4.2.1 Turning Operation 137</p>
<p>5.4.2.2 Milling Operation 143</p>
<p>5.4.2.3 Drilling Operation 147</p>
<p>5.4.2.4 Grinding operation 148</p>
<p>5.5 Conclusions 151</p>
<p>Reference 151</p>
<p>6 Nontraditional Removal Processes 155<br />Murali Sundaram and K.P. Rajurkar</p>
<p>6.1 Introduction 155</p>
<p>6.1.2 Working Principle 156</p>
<p>6.1.2.1 Electrical Discharge Machining 156</p>
<p>6.2.2.2 Electrochemical Machining 157</p>
<p>6.1.2.3 Electrochemical Ddischarge Machining 159</p>
<p>6.1.2.4 Electrochemical Grinding 160</p>
<p>6.2 Energy Efficiency 161</p>
<p>Acknowledgments 163</p>
<p>References 163</p>
<p>7 Surface Treatment and Tribological Considerations 165<br />S.R. Schmid and J. Jeswiet</p>
<p>7.1 Introduction 166</p>
<p>7.2 Surface Treatment Techniques 169</p>
<p>7.2.1 Surface Geometry Modification 170</p>
<p>7.2.2 Microstructural Modification 171</p>
<p>7.2.3 Chemical Approaches 175</p>
<p>7.3 Coating Operations 175</p>
<p>7.3.1 Hard Facing 175</p>
<p>7.3.2 Vapor Deposition 179</p>
<p>7.3.3 Miscellaneous Coating Operations 181</p>
<p>7.4 Tribology 185</p>
<p>7.5 Evolving Technologies 187</p>
<p>7.5.1 Biomimetics Biologically Inspired Design 187</p>
<p>7.6 Micro Manufacturing 188</p>
<p>7.7 Conclusions 190</p>
<p>References 190</p>
<p>8 Joining Processes 193<br />Amber Shrivastava, Manuela Krones, Frank E. Pfefferkorn</p>
<p>8.1 Introduction 194</p>
<p>8.2 Sustainability in Joining 196</p>
<p>8.3 Taxonomy 199</p>
<p>8.4 Data Sources 201</p>
<p>8.5 Efficiency of Joining Equipment 204</p>
<p>8.6 Efficiency of Joining Processes 206</p>
<p>8.6.1 Fusion Welding 207</p>
<p>8.6.2 Chemical Joining Methods 210</p>
<p>8.6.3 Solid–State Welding 212</p>
<p>8.6.4 Mechanical Joining Methods 214</p>
<p>8.6.4.1 Mechanical Fastening 214</p>
<p>8.6.4.2 Adhesive Bonding 215</p>
<p>8.7 Process Selection 216</p>
<p>8.8 Efficiency of Joining Facilities 217</p>
<p>8.9 Case Studies 220</p>
<p>8.9.1 Submerged Arc Welding (SAW) 220</p>
<p>8.9.2 Friction Stir Welding (FSW) 224</p>
<p>Reference 231</p>
<p>9 Manufacturing Equipment 235<br />M. Helu, N. Diaz–Elsayed, D. Dornfeld </p>
<p>9.1 Introduction 235</p>
<p>9.2 Power Measurement 236</p>
<p>9.3 Characterizing the Power Demand 238</p>
<p>9.3.1 Constant Power 238</p>
<p>9.3.2 Variable Power 239</p>
<p>9.3.3 Processing Power 240</p>
<p>9.4 Energy Model 240</p>
<p>9.5 Life Cycle Energy Analysis of Production Equipment 241</p>
<p>9.6 Energy Reduction Strategies 243</p>
<p>9.6.1 Strategies for Equipment with High Processing Power 244</p>
<p>9.6.2 Strategies for Equipment with High Tare Power 245</p>
<p>9.6.2.1 Process Time 245</p>
<p>9.6.2.2 Machine Design 246</p>
<p>9.7 Additional Life Cycle Impacts of Energy</p>
<p>Reduction Strategies 248</p>
<p>9.8 Summary 250</p>
<p>References 252</p>
<p>10 Energy Considerations in Assembly Operations 257<br />Camelio, J.A., McCullough, D., Prosch, S. and Rickli, J.L.</p>
<p>10.1 Introduction to Assembly Systems & Operations 258</p>
<p>10.2 Fundamentals of Assembly Operations 259</p>
<p>10.3 characterizing Assembly System Energy Consumption 260</p>
<p>10.3.1 Indirect Energy 261</p>
<p>10.3.2 Direct Energy 262</p>
<p>10.4 Direct Energy Considerations of Assembly Joining Processes 264</p>
<p>10.4.1 Mechanical Assembly 264</p>
<p>10.4.2 Adhesive Bonding 265</p>
<p>10.4.3 Welding, Brazing, and Soldering 268</p>
<p>10.5 Assembly System Energy Metrics 271</p>
<p>10.6 Case Study: Heavy Duty Truck Assembly 276</p>
<p>10.6.1 Case Study Energy Consumption Analysis Approach 276</p>
<p>10.6.2 Assembly Process Categorization 277</p>
<p>10.6.3 Case Study Energy Analysis Results 281</p>
<p>10.6.4 Discussion and Recommendations 288</p>
<p>10.7 Future of Energy Efficient Assembly Operations 289</p>
<p>References 290</p>
<p>Appendix 10.A 292</p>
<p>11 Manufacturing Facility Energy Improvement 295<br />Chris Yuan, Junling Xie, John Nicol</p>
<p>11.1 Introduction 296</p>
<p>11.2 Auxiliary Industrial Energy Consumptions 299</p>
<p>11.2.1 Lighting 299</p>
<p>11.2.1.1 Lighting Technologies 300</p>
<p>11.2.1.2 Opportunities for Improving Energy Efficiency of Industrial Lighting 301</p>
<p>References 334</p>
<p>12 Energy Efficient Manufacturing Process Planning 335<br />RuixueYin, Fu Zhao, John W. Sutherland</p>
<p>12.1 Introduction 335</p>
<p>12.2 The Basics of Process Planning 337</p>
<p>12.2.1 Types of Production 338</p>
<p>12.2.2 Process Planning Procedure 340</p>
<p>12.2.3 Process Planning Methods 342</p>
<p>12.3 Energy Efficient Process Planning 346</p>
<p>12.3.1 Energy Consumption and Carbon Footprint Models of Manufacturing Processes</p>
<p>12.3.2 A Semi–Generative Process Planning 346</p>
<p>Approach for Energy Efficiency 347</p>
<p>12.4 Case Study 349</p>
<p>12.5 Conclusions 353</p>
<p>Reference 353</p>
<p>13 Scheduling for Energy Efficient Manufacturing 355<br />Nelson A. Uhan, Andrew Liu and Fu Zhao </p>
<p>13.1 Introduction 355</p>
<p>13.2 A Brief Introduction to Scheduling 356</p>
<p>13.3 Machine Environments 356</p>
<p>13.4 Job Characteristics 358</p>
<p>13.5 Feasible Schedules and Gantt Charts 358</p>
<p>13.6 Objective functions: classic time–based objectives 360</p>
<p>13.7 Objective Functions for Energy Efficiency 361</p>
<p>13.8 An Integer Linear Program for Scheduling an Energy–Efficient Flow Shop 363</p>
<p>13.9 A Very Brief Introduction to Mathematical Optimization 364</p>
<p>13.10 A Time–Indexed Integer Linear Program for the Energy–Efficient Flow Shop Problem 366</p>
<p>13.10.1 Algorithms for Solving IntegerLinear Programs 372</p>
<p>13.11 Conclusion and Additional Reading 373</p>
<p>References 375</p>
<p>14 Energy Efficiency in the Supply Chain 377<br />Thomas J. Goldsby and Fazleena Badurdeen</p>
<p>14.1 Supply Chain Management 377</p>
<p>14.2 Supply Chain Structure 378</p>
<p>14.3 Supply Chain Processes 381</p>
<p>14.3.1 Customer Relationship Management 383</p>
<p>14.3.2 Supplier Relationship Management 384</p>
<p>14.3.3 Customer Service Management 385</p>
<p>14.3.4 Demand Management 386</p>
<p>14.3.5 Manufacturing Flow Management 387</p>
<p>14.3.6 Order Fulfillment 388</p>
<p>14.3.7 Product Development and Commercialization 389</p>
<p>14.3.8 Returns Management 390</p>
<p>14.4 Supply Chain Management Components 391</p>
<p>14.5 Conclusion 392</p>
<p>References 392</p>
<p>Endnotes 396</p>
<p>15 Business Models and Organizational Strategies 397<br />Omar Romero–Hernandez, David Hirsch, Sergio Romero, Sara Beckman</p>
<p>15.1 Introduction 398</p>
<p>15.2 Reference Framework for Selection of Energy Efficiency Projects 400</p>
<p>15.2.1 Mission and Drivers 401</p>
<p>15.2.2 Set Level of Assessment 401</p>
<p>15.2.3 Recognize Opportunities and Risk 402</p>
<p>15.2.4 Select Projects 402</p>
<p>15.2.5 Implementation and Communication 403</p>
<p>15.3 Common Energy Efficiency Opportunities 404</p>
<p>15.3.1 Building Envelope 404</p>
<p>15.3.2 Heating, Ventilation and Air Conditioning (HVAC) 405</p>
<p>15.3.3 Efficient Lighting 406</p>
<p>15.3.4 Efficient Motors and Systems 407</p>
<p>15.3.5 Building Management Systems 408</p>
<p>15.4 Stakeholders 409</p>
<p>15.4.1 Tenants and Owners 409</p>
<p>15.4.2 Regulators 410</p>
<p>15.4.3 Banks/Lenders 410</p>
<p>15.4.4 Energy Service Companies (ESCOs) 411</p>
<p>15.4.5 Business Models 411</p>
<p>15.5 Conclusions 413</p>
<p>References 413</p>
<p>16 Energy Efficient or Energy Effective Manufacturing? 417<br />S. A. Shade and J. W. Sutherland</p>
<p>16.1 Energy Efficiency: A Macro Perspective 418</p>
<p>16.1.1 Government Perspective 418</p>
<p>16.1.2 Company Perspective 419</p>
<p>16.2 The Basics of Energy Efficiency 421</p>
<p>16.3 Limitations of Energy Efficiency 429</p>
<p>16.4 Energy Effectiveness 432</p>
<p>16.4.1 Effectiveness It s Up to the Decision Maker 434</p>
<p>16.4.2 Effectiveness A Choice on Where to Invest 435</p>
<p>16.4.3 Effectiveness Is An Action Really Worthwhile? 435</p>
<p>16.5 Summary 438</p>
<p>16.6 Acknowledgments 439</p>
<p>References 439</p>