One–Dimensional Nanostructures – Principles and Applications
Principles and Applications
Samenvatting
Reviews the latest research breakthroughs and applications
Since the discovery of carbon nanotubes in 1991, one–dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one–dimensional nanostructures, including carbon nanotubes, semiconductor nanowires, organic molecule nanostructures, polymer nanofibers, peptide nanostructures, and supramolecular nanostructures. Moreover, the book offers unique insights into the future of one–dimensional nanostructures, with expert forecasts of new research breakthroughs and applications.
One–Dimensional Nanostructures collects and analyzes a wealth of key research findings and applications, with detailed coverage of:
Synthesis
Properties
Energy applications
Photonics and optoelectronics applications
Sensing, plasmonics, electronics, and biosciences applications
Practical case studies demonstrate how the latest applications work. Tables throughout the book summarize key information, and diagrams enable readers to grasp complex concepts and designs. References at the end of each chapter serve as a gateway to the literature in the field.
With its clear explanations of the underlying principles of one–dimensional nanostructures, this book is ideal for students, researchers, and academics in chemistry, physics, materials science, and engineering. Moreover, One–Dimensional Nanostructures will help readers advance their own investigations in order to develop the next generation of applications.
Specificaties
Inhoudsopgave
<p>Preface xvii</p>
<p>Contributors xix</p>
<p>1 One–Dimensional Semiconductor Nanostructure Growth with Templates 1<br /> Zhang Zhang and Stephan Senz</p>
<p>1.1 Introduction, 1</p>
<p>1.2 Anodic Aluminum Oxide (AAO) as Templates, 4</p>
<p>1.2.1 Synthesis of Self–Organized AAO Membrane, 4</p>
<p>1.2.2 Synthesis of Polycrystalline Si Nanotubes, 5</p>
<p>1.2.3 AAO as Template for Si Nanowire Epitaxy, 8</p>
<p>1.3 Conclusion and Outlook, 16</p>
<p>Acknowledgments, 16</p>
<p>References, 16</p>
<p>2 Metal Ligand Systems for Construction of One–Dimensional Nanostructures 19<br /> Rub´en Mas–Ballest´e and F´elix Zamora</p>
<p>2.1 Introduction, 19</p>
<p>2.2 Microstructures Based on 1D Coordination Polymers, 20</p>
<p>2.2.1 Preparation Methods, 20</p>
<p>2.2.2 Structures, 21</p>
<p>2.2.3 Shape and Size Control, 23</p>
<p>2.2.4 Methods for Study of Microstructures, 24</p>
<p>2.2.5 Formation Mechanisms, 25</p>
<p>2.2.6 Properties and Applications, 26</p>
<p>2.3 Bundles and Single Molecules on Surfaces Based on 1D Coordination Polymers, 28</p>
<p>2.3.1 Isolation Methods and Morphological Characterization, 28</p>
<p>2.3.2 Tools for the Studies at the Molecular Level, 34</p>
<p>2.3.3 Properties Studied at Single–Molecule Level, 36</p>
<p>2.4 Conclusion and Outlook, 37</p>
<p>Acknowledgments, 38</p>
<p>References, 38</p>
<p>3 Supercritical Fluid Liquid Solid (SFLS) Growth of Semiconductor Nanowires 41<br /> Brian A. Korgel</p>
<p>3.1 Introduction, 41</p>
<p>3.2 The SFLS Growth Mechanism, 42</p>
<p>3.2.1 Supercritical Fluids as a Reaction Medium for VLS–Like Nanowire Growth, 43</p>
<p>3.2.2 SFLS–Grown Nanowires, 44</p>
<p>3.3 Properties and Applications of SFLS–Grown Nanowires, 51</p>
<p>3.3.1 Mechanical Properties, 52</p>
<p>3.3.2 Printed Nanowire Field–Effect Transistors, 57</p>
<p>3.3.3 Silicon–Nanowire–Based Lithium Ion Battery Anodes, 59</p>
<p>3.3.4 Semiconductor Nanowire Fabric, 60</p>
<p>3.3.5 Other Applications, 61</p>
<p>3.4 Conclusion and Outlook, 61</p>
<p>Acknowledgments, 62</p>
<p>References, 62</p>
<p>4 Colloidal Semiconductor Nanowires 65<br /> Zhen Li, Gaoqing (Max) Lu, Qiao Sun, Sean C. Smith, and Zhonghua Zhu</p>
<p>4.1 Introduction, 65</p>
<p>4.2 Theoretical Calculations, 66</p>
<p>4.2.1 Effective Mass Multiband Method (EMMM), 66</p>
<p>4.2.2 Empirical Pseudopotential Method (EPM), 68</p>
<p>4.2.3 Charge Patching Method (CPM), 69</p>
<p>4.3 Synthesis of Colloidal Semiconductor Nanowires, 70</p>
<p>4.3.1 Oriented Attachment, 71</p>
<p>4.3.2 Template Strategy, 76</p>
<p>4.3.3 Solution Liquid Solid Growth, 79</p>
<p>4.4 Properties of Colloidal Semiconductor Nanowires, 85</p>
<p>4.4.1 Optical Properties of Semiconductor Nanowires, 85</p>
<p>4.4.2 Electronic Properties of Semiconductor Nanowires, 87</p>
<p>4.4.3 Magnetic Properties of Semiconductor Nanowires, 89</p>
<p>4.5 Applications of Colloidal Semiconductor Nanowires, 90</p>
<p>4.5.1 Semiconductor Nanowires for Energy Conversion, 90</p>
<p>4.5.2 Semiconductor Nanowires in Life Sciences, 92</p>
<p>4.6 Conclusion and Outlook, 94</p>
<p>Acknowledgments, 95</p>
<p>References, 95</p>
<p>5 Core Shell Effect on Nucleation and Growth of Epitaxial Silicide in Nanowire of Silicon 105<br /> Yi–Chia Chou and King–Ning Tu</p>
<p>5.1 Introduction, 105</p>
<p>5.2 Core Shell Effects on Materials, 105</p>
<p>5.3 Nucleation and Growth of Silicides in Silicon Nanowires, 106</p>
<p>5.3.1 Nanoscale Silicide Formation by Point Contact Reaction, 107</p>
<p>5.3.2 Supply Limit Reaction in Point Contact Reactions, 107</p>
<p>5.3.3 Repeating Event of Nucleation, 107</p>
<p>5.4 Core Shell Effect on Nucleation of Nanoscale Silicides, 109</p>
<p>5.4.1 Introduction to Solid–State Nucleation, 109</p>
<p>5.4.2 Stepflow of Si Nanowire Growth at Silicide/Si Interface, 109</p>
<p>5.4.3 Observation of Homogeneous Nucleation in Silicide Epitaxial Growth, 110</p>
<p>5.4.4 Theory of Homogeneous Nucleation and Correlation with Experiments, 111</p>
<p>5.4.5 Homogeneous Nucleation Supersaturation, 113</p>
<p>5.4.6 Heterogeneous and Homogeneous Nucleation of Nanoscale Silicides, 113</p>
<p>Acknowledgments, 115</p>
<p>References, 115</p>
<p>6 Selected Properties of Graphene and Carbon Nanotubes 119<br /> H. S. S. Ramakrishna Matte, K. S. Subrahmanyam, A. Govindaraj, and C. N. R. Rao</p>
<p>6.1 Introduction, 119</p>
<p>6.2 Structure and Properties of Graphene, 119</p>
<p>6.2.1 Electronic Structure, 119</p>
<p>6.2.2 Raman Spectroscopy, 120</p>
<p>6.2.3 Chemical Doping, 121</p>
<p>6.2.4 Electronic and Magnetic Properties, 122</p>
<p>6.2.5 Molecular Charge Transfer, 127</p>
<p>6.2.6 Decoration with Metal Nanoparticles, 128</p>
<p>6.3 Structure and Properties of Carbon Nanotubes, 130</p>
<p>6.3.1 Structure, 130</p>
<p>6.3.2 Raman Spectroscopy, 132</p>
<p>6.3.3 Electrical Properties, 133</p>
<p>6.3.4 Doping, 134</p>
<p>6.3.5 Molecular Charge Transfer, 136</p>
<p>6.3.6 Decoration with Metal Nanoparticles, 137</p>
<p>6.4 Conclusion and Outlook, 138</p>
<p>References, 138</p>
<p>7 One–Dimensional Semiconductor Nanowires: Synthesis and Raman Scattering 145<br /> Jun Zhang, Jian Wu, and Qihua Xiong</p>
<p>7.1 Introduction, 145</p>
<p>7.2 Synthesis and Growth Mechanism of 1D Semiconductor Nanowires, 146</p>
<p>7.2.1 Nanowire Synthesis, 146</p>
<p>7.2.2 Synthesis of 1D Semiconductor Nanowires, 147</p>
<p>7.2.3 1D Semiconductor Heterostructures, 151</p>
<p>7.3 Raman Scattering in 1D Nanowires, 153</p>
<p>7.3.1 Phonon Confinement Effect, 153</p>
<p>7.3.2 Radial Breathing Modes, 155</p>
<p>7.3.3 Surface Phonon Modes, 156</p>
<p>7.3.4 Antenna Effect, 158</p>
<p>7.3.5 Stimulated Raman Scattering, 160</p>
<p>7.4 Conclusions and Outlook, 161</p>
<p>Acknowledgment, 161</p>
<p>References, 161</p>
<p>8 Optical Properties and Applications of Hematite ( –Fe2O3) Nanostructures 167<br /> Yichuan Ling, Damon A. Wheeler, Jin Zhong Zhang, and Yat Li</p>
<p>8.1 Introduction, 167</p>
<p>8.2 Synthesis of 1D Hematite Nanostructures, 167</p>
<p>8.2.1 Nanowires, 168</p>
<p>8.2.2 Nanotubes, 169</p>
<p>8.2.3 Element–Doped 1D Hematite Structures, 170</p>
<p>8.3 Optical Properties, 171</p>
<p>8.3.1 Electronic Transitions in Hematite, 171</p>
<p>8.3.2 Steady–State Absorption, 172</p>
<p>8.3.3 Photoluminescence, 174</p>
<p>8.4 Charge Carrier Dynamics in Hematite, 175</p>
<p>8.4.1 Background on Time–Resolved Studies of Nanostructures, 175</p>
<p>8.4.2 Carrier Dynamics of Hematite Nanostructures, 175</p>
<p>8.5 Applications, 178</p>
<p>8.5.1 Photocatalysis, 178</p>
<p>8.5.2 Photoelectrochemical Water Splitting, 179</p>
<p>8.5.3 Photovoltaics, 180</p>
<p>8.5.4 Gas Sensors, 181</p>
<p>8.5.5 Conclusion And Outlook, 181</p>
<p>Acknowledgments, 181</p>
<p>References, 181</p>
<p>9 Doping Effect on Novel Optical Properties of Semiconductor Nanowires 185<br /> Bingsuo Zou, Guozhang Dai, and Ruibin Liu</p>
<p>9.1 Introduction, 185</p>
<p>9.2 Results and Discussion, 185</p>
<p>9.2.1 Bound Exciton Condensation in Mn(II)–Doped ZnO Nanowire, 185</p>
<p>9.2.2 Fe(III)–Doped ZnO Nanowire and Visible Emission Cavity Modes, 192</p>
<p>9.2.3 Sn(IV) Periodically Doped CdS Nanowire and Coupled Optical Cavity Modes, 199</p>
<p>9.3 Conclusion and Outlook, 203</p>
<p>Acknowledgment, 203</p>
<p>References, 203</p>
<p>10 Quantum Confinement Phenomena in Bioinspired and Biological Peptide Nanostructures 207<br /> Gil Rosenman and Nadav Amdursky</p>
<p>10.1 Introduction, 207</p>
<p>10.2 Bioinspired Peptide Nanostructures, 208</p>
<p>10.3 Peptide Nanostructured Materials (PNM): Intrinsic Basic Physics, 209</p>
<p>10.4 Experimental Techniques With Peptide Nanotubes (PNTs), 209</p>
<p>10.4.1 PNT Vapor Deposition Method, 209</p>
<p>10.4.2 PNT Patterning, 211</p>
<p>10.5 Quantum Confinement in PNM Structures, 212</p>
<p>10.5.1 Quantum Dot Structure in Peptide Nanotubes and Spheres, 212</p>
<p>10.5.2 Structurally Induced Quantum Dot to Quantum Well Transition in Peptide Hydrogels, 219</p>
<p>10.5.3 Quantum Well Structure in Vapor–Deposited Peptide Nanofibers, 221</p>
<p>10.5.4 Thermally Induced Phase Transition in Peptide Quantum Structures, 225</p>
<p>10.5.5 Quantum Confinement in Amyloid Proteins, 229</p>
<p>10.6 Conclusions, 231</p>
<p>Acknowledgment, 233</p>
<p>References, 233</p>
<p>11 One–Dimensional Nanostructures for Energy Harvesting 237<br /> Zhiyong Fan, Johnny C. Ho, and Baoling Huang</p>
<p>11.1 Introduction, 237</p>
<p>11.2 Growth and Fabrication of 1D Nanomaterials, 237</p>
<p>11.2.1 Generic Vapor–Phase Growth, 237</p>
<p>11.2.2 Direct Assembly of 1D Nanomaterials with Template–Based Growth, 238</p>
<p>11.3 1D Nanomaterials for Solar Energy Harvesting, 240</p>
<p>11.3.1 Fundamentals of Nanowire Photovoltaic Devices, 240</p>
<p>11.3.2 Performance Limiting Factors of Nanowire Solar Cells, 241</p>
<p>11.3.3 Investigation of Nanowire Array Properties, 242</p>
<p>11.3.4 Photovoltaic Devices Based on 1D Nanomaterial Arrays, 244</p>
<p>11.4 1D Nanomaterials for Piezoelectric Energy Conversion, 247</p>
<p>11.4.1 Piezoelectric Properties of ZnO Nanowires, 248</p>
<p>11.4.2 ZnO Nanowire Array Nanogenerators, 249</p>
<p>11.5 1D Nanomaterials for Thermoelectric Energy Conversion, 253</p>
<p>11.5.1 Thermoelectric Transport Properties, 254</p>
<p>11.5.2 Enhancement of ZT : From Bulk to Nanoscale, 256</p>
<p>11.5.3 Thermoelectric Nanowires, 257</p>
<p>11.5.4 Characterization of Thermoelectric Behavior of Nanowires, 261</p>
<p>11.6 Summary and Outlook, 263</p>
<p>Acknowledgment, 264</p>
<p>References, 264</p>
<p>12 p n Junction Silicon Nanowire Arrays For Photovoltaic Applications 271<br /> Jun Luo and Jing Zhu</p>
<p>12.1 Introduction, 271</p>
<p>12.2 Fabrication Of p n Junction Silicon Nanowire Arrays, 271</p>
<p>12.2.1 Top Down Approach, 271</p>
<p>12.2.2 Bottom UP Approach, 273</p>
<p>12.3 Characterization of p n Junctions in Silicon Nanowire Arrays, 274</p>
<p>12.4 Photovoltaic Application of p n Junction Silicon Nanowire Arrays, 277</p>
<p>12.4.1 Photovoltaic Devices Based on Axial Junction Nanowire Arrays, 277</p>
<p>12.4.2 Photovoltaic Devices Based on Radial Junction Nanowire Arrays, 282</p>
<p>12.4.3 Photovoltaic Devices Based on Individual Junction Nanowires, 285</p>
<p>12.5 Conclusion and Outlook, 288</p>
<p>Acknowledgment, 291</p>
<p>References, 292</p>
<p>13 One–Dimensional Nanostructured Metal Oxides for Lithium Ion Batteries 295<br /> Huiqiao Li, De Li, and Haoshen Zhou</p>
<p>13.1 Introduction, 295</p>
<p>13.2 Operating Principles of Lithium Ion Batteries, 295</p>
<p>13.3 Advantages of Nanomaterials for Lithium Batteries, 296</p>
<p>13.4 Cathode Materials of 1D Nanostructure, 297</p>
<p>13.4.1 Background, 297</p>
<p>13.4.2 Vanadium–Based Oxides, 298</p>
<p>13.4.3 Manganese–Based Oxides, 303</p>
<p>13.5 Anode Materials of 1D Nanostructure, 307</p>
<p>13.5.1 Background, 307</p>
<p>13.5.2 Titanium Oxides Based on Intercalation Reaction, 307</p>
<p>13.5.3 Metal Oxides Based on Conventional Reaction, 311</p>
<p>13.5.4 Tin– or Silicon–Based Materials, 313</p>
<p>13.6 Challenges and Perspectives of Nanomaterials, 315</p>
<p>13.7 Conclusion, 316</p>
<p>References, 317</p>
<p>14 Carbon Nanotube (CNT)–Based High–Performance Electronic and Optoelectronic Devices 321<br /> Lian–Mao Peng, Zhiyong Zhang, Sheng Wang, and Yan Li</p>
<p>14.1 Introduction, 321</p>
<p>14.2 Controlled Growth Of Single–Walled CNT (SWCNT) Arrays on Substrates, 322</p>
<p>14.2.1 Catalysts for Growth of SWCNT Arrays, 322</p>
<p>14.2.2 Orientation Control of SWCNTs, 323</p>
<p>14.2.3 Position, Density, and Diameter Control of SWCNTs, 323</p>
<p>14.2.4 Bandgap and Property Control of SWCNTs, 323</p>
<p>14.3 Doping–Free Fabrication and Performance of CNT FETs, 324</p>
<p>14.3.1 High–Performance n– and p–Type CNT FETs, 325</p>
<p>14.3.2 Integration of High– Materials with CNT FETs, 326</p>
<p>14.3.3 Comparisons between Si– and CNT–Based FETs, 327</p>
<p>14.3.4 Temperature Performance of CNT FETs, 329</p>
<p>14.4 CNT–Based Optoelectronic Devices, 331</p>
<p>14.4.1 CNT–Based p n Junction and Diode Characteristics, 331</p>
<p>14.4.2 CNT Photodetectors, 331</p>
<p>14.4.3 CNT Light Emitting Diodes, 333</p>
<p>14.5 Outlook, 335</p>
<p>Acknowledgment, 336</p>
<p>References, 336</p>
<p>15 Properties and Devices of Single One–Dimensional Nanostructure: Application of Scanning Probe Microscopy 339<br /> Wei–Guang Xie, Jian–Bin Xu, and Jin An</p>
<p>15.1 Introduction, 339</p>
<p>15.2 Atomic Structures and Density of States, 340</p>
<p>15.2.1 Carbon Nanotubes, 340</p>
<p>15.2.2 Defects, 342</p>
<p>15.2.3 One–Dimensional Nanostructure of Silicon, 343</p>
<p>15.2.4 Other One–Dimensional Nanostructures, 344</p>
<p>15.2.5 Atomic Structure of Carbon Nanotubes by Atomic Force Microscopy, 344</p>
<p>15.3 In situ Device Characterization, 345</p>
<p>15.4 Substrate Effects, 350</p>
<p>15.5 Surface Effects, 351</p>
<p>15.6 Doping, 353</p>
<p>15.7 Summary, 356</p>
<p>Acknowledgments, 356</p>
<p>References, 356</p>
<p>16 More Recent Advances in One–Dimensional Metal Oxide Nanostructures: Optical and Optoelectronic Applications 359<br /> Lei Liao and Xiangfeng Duan</p>
<p>16.1 Introduction, 359</p>
<p>16.2 Synthesis and Physical Properties of 1D Metal Oxide, 359</p>
<p>16.2.1 Top Down Method, 360</p>
<p>16.2.2 Bottom Up Approach, 360</p>
<p>16.2.3 Physical Properties of 1D Metal Oxide Nanostructures, 360</p>
<p>16.3 More Recent Advances in Device Application Based on 1D Metal Oxide Nanostructures, 360</p>
<p>16.3.1 Waveguides, 361</p>
<p>16.3.2 LEDs, 363</p>
<p>16.3.3 Lasing, 367</p>
<p>16.3.4 Solar Cells, 371</p>
<p>16.3.5 Photodetectors, 373</p>
<p>16.4 Challenges and Perspectives, 374</p>
<p>Acknowledgments, 375</p>
<p>References, 375</p>
<p>17 Organic One–Dimensional Nanostructures: Construction and Optoelectronic Properties 381<br /> Yong Sheng Zhao and Jiannian Yao</p>
<p>17.1 Introduction, 381</p>
<p>17.2 Construction Strategies, 382</p>
<p>17.2.1 Self–Assembly in Liquid Phase, 382</p>
<p>17.2.2 Template–Induced Growth, 382</p>
<p>17.2.3 Synthesis of Organic 1D Nanocomposites in Liquid Phase, 383</p>
<p>17.2.4 Morphology Control with Molecular Design, 384</p>
<p>17.2.5 Physical Vapor Deposition (PVD), 386</p>
<p>17.3 Optoelectronic Properties, 387</p>
<p>17.3.1 Multicolor Emission, 387</p>
<p>17.3.2 Electroluminescence and Field Emission, 387</p>
<p>17.3.3 Optical Waveguides, 388</p>
<p>17.3.4 Lasing, 389</p>
<p>17.3.5 Tunable Emission from Binary Organic Nanowires, 390</p>
<p>17.3.6 Waveguide Modulation, 391</p>
<p>17.3.7 Chemical Vapor Sensors, 392</p>
<p>17.4 Conclusion and Perspectives, 393</p>
<p>Acknowledgment, 393</p>
<p>References, 394</p>
<p>18 Controllable Growth and Assembly of One–Dimensional Structures of Organic Functional Materials for Optoelectronic Applications 397<br /> Lang Jiang, Huanli Dong, and Wenping Hu</p>
<p>18.1 Introduction, 397</p>
<p>18.2 Synthetic Methods for Producing 1D Organic Nanostructures, 398</p>
<p>18.2.1 Vapor Methods, 398</p>
<p>18.2.2 Solution Methods, 399</p>
<p>18.3 Controllable Growth and Assembly of 1D Ordered Nanostructures, 400</p>
<p>18.3.1 Template/Mold–Assisted Methods, 400</p>
<p>18.3.2 Substrate–Induced Methods, 400</p>
<p>18.3.3 External–Force–Assisted Growth, 400</p>
<p>18.4 Optoelectronic Applications of 1D Nanostructures, 405</p>
<p>18.4.1 Organic Photovoltaic Cells, 405</p>
<p>18.4.2 Organic Field–Effect Transistors, 406</p>
<p>18.4.3 Photoswitches and Phototransistors, 408</p>
<p>18.5 Conclusion and Outlook, 408</p>
<p>Acknowledgments, 410</p>
<p>References, 410</p>
<p>19 Type II Antimonide–Based Superlattices: A One–Dimensional Bulk Semiconductor 415<br /> Manijeh Razeghi and Binh–Minh Nguyen</p>
<p>19.1 Introduction, 415</p>
<p>19.2 Material System and Variants of Type II Superlattices, 415</p>
<p>19.2.1 The 6.1 Angstrom Family, 415</p>
<p>19.2.2 Type II InAs/GaSb Superlattices, 416</p>
<p>19.2.3 Variants of Sb–Based Superlattices, 416</p>
<p>19.3 One–Dimensional Physics of Type II Superlattices, 418</p>
<p>19.3.1 Qualitative Description of Type II Superlattices, 418</p>
<p>19.3.2 Numerical Calculation of Type II Superlattice Band Structure, 421</p>
<p>19.3.3 Band Structure Result, 424</p>
<p>19.3.4 M Structure Superlattices, 427</p>
<p>19.4 Type II Superlattices for Infrared Detection and Imaging, 428</p>
<p>19.4.1 Theoretical Modeling and Device Architecture Optimization, 428</p>
<p>19.4.2 Material Growth and Structural Characterization, 428</p>
<p>19.4.3 Device Fabrication, 429</p>
<p>19.4.4 Integrated Measurement System, 429</p>
<p>19.4.5 Focal Plane Arrays and Infrared Imaging, 430</p>
<p>19.5 Summary, 432</p>
<p>Acknowledgments, 432</p>
<p>References, 433</p>
<p>20 Quasi One–Dimensional Metal Oxide Nanostructures for Gas Sensors 435<br /> Andrea Ponzoni, Guido Faglia, and Giorgio Sberveglieri</p>
<p>20.1 Introduction, 435</p>
<p>20.2 Working Principle, 435</p>
<p>20.2.1 Electrical Conduction in Metal Oxides, 435</p>
<p>20.2.2 Adsorption/Desorption Phenomena, 436</p>
<p>20.2.3 Transduction Mechanism, 436</p>
<p>20.2.4 Sensor Response Parameters, 438</p>
<p>20.3 Bundled Nanowire Devices, 438</p>
<p>20.3.1 Integration of Nanowires into Functional Devices, 438</p>
<p>20.3.2 Conductometric Gas Sensors, 439</p>
<p>20.4 Single–Nanowire Devices, 442</p>
<p>20.4.1 Integration of Nanowires into Functional Devices, 442</p>
<p>20.4.2 Role of Electrical Contacts, 442</p>
<p>20.4.3 Conductometric Gas Sensors, 443</p>
<p>20.4.4 Field–Effect Transistor (FET) Devices Based on Single Nanowires, 445</p>
<p>20.5 Electronic Nose, 445</p>
<p>20.5.1 Chemical Sensitization, 446</p>
<p>20.5.2 Gradient Array (KAMINA Platform), 446</p>
<p>20.5.3 Mixed Arrays, 447</p>
<p>20.6 Optical Gas Sensors, 447</p>
<p>20.6.1 Experimental Observations, 448</p>
<p>20.6.2 Working Mechanism, 448</p>
<p>20.7 Conclusions, 450</p>
<p>Acknowledgments, 450</p>
<p>References, 450</p>
<p>21 One–Dimensional Nanostructures in Plasmonics 455<br /> Xuefeng Gu, Teng Qiu, and Paul K. Chu</p>
<p>21.1 Introduction, 455</p>
<p>21.2 1D plasmonic Waveguides, 456</p>
<p>21.2.1 Tradeoff between Light Confinement and Propagation Length, 456</p>
<p>21.2.2 Surface Plasmon Polariton (SPP) Propagation along Nanoparticle Chains, 456</p>
<p>21.2.3 SPP Propagation along Nanowires, 457</p>
<p>21.2.4 Hybrid Waveguiding Nanostructures, 457</p>
<p>21.2.5 Enhanced SPP Coupling between Nanowires and External Devices, 457</p>
<p>21.3 1D Nanostructures in Surface–Enhanced Raman Scattering, 459</p>
<p>21.3.1 Surface–Enhanced Raman Scattering, 459</p>
<p>21.3.2 Nanowires in Surface–Enhanced Raman Scattering, 460</p>
<p>21.3.3 Nanorods in Surface–Enhanced Raman Scattering, 461</p>
<p>21.3.4 Nanotubes in Surface–Enhanced Raman Scattering, 462</p>
<p>21.4 Plasmonic 1D Nanostructures in Photovoltaics, 464</p>
<p>21.4.1 Solar Cells with 1D Nanostructures as Building Elements, 465</p>
<p>21.4.2 Plasmonic 1D Nanostructures for Improved Photovoltaics, 466</p>
<p>21.5 Conclusion And Outlook, 467</p>
<p>Acknowledgments, 469</p>
<p>References, 469</p>
<p>22 Lateral Metallic Nanostructures for Spintronics 473<br /> Marius V. Costache, Bart J. van Wees, and Sergio O. Valenzuela</p>
<p>22.1 Introduction, 473</p>
<p>22.2 Introduction to Spin Transport in 1D Systems, 474</p>
<p>22.3 Fabrication Techniques For Lateral Spin Devices, 476</p>
<p>22.3.1 Electron Beam Lithography, 476</p>
<p>22.3.2 Multistep Process Using Ion Milling for Clean Interfaces, 476</p>
<p>22.3.3 Shadow Evaporation Technique for Tunnel Barriers, 476</p>
<p>22.4 Examples of Devices Fabricated Using The Shadow Evaporation Technique, 478</p>
<p>Acknowledgments, 481</p>
<p>References, 481</p>
<p>23 One–Dimensional Inorganic Nanostructures for Field Emitters 483<br /> Tianyou Zhai, Xi Wang, Liang Li, Yoshio Bando, and Dmitri Golberg</p>
<p>23.1 Introduction, 483</p>
<p>23.2 Key Factors Affecting Field Emission (FE) Performance of 1D Nanostructures, 484</p>
<p>23.2.1 Morphology Effects, 484</p>
<p>23.2.2 Phase Structure Effects, 490</p>
<p>23.2.3 Temperature Effects, 490</p>
<p>23.2.4 Light Illumination Effects, 491</p>
<p>23.2.5 Gas Exposure Effects, 492</p>
<p>23.2.6 Substrate Effects, 492</p>
<p>23.2.7 Gap Effects, 493</p>
<p>23.2.8 Composition Effects, 493</p>
<p>23.2.9 Hetero/branched Structure Effects, 496</p>
<p>23.3 Conclusion and Outlook, 497</p>
<p>Acknowledgment, 499</p>
<p>References, 499</p>
<p>24 One–Dimensional Field–Effect Transistors 503<br /> Joachim Knoch</p>
<p>24.1 Introduction, 503</p>
<p>24.2 An Introduction to Field–Effect Transistors, 503</p>
<p>24.2.1 Fundamental Properties of Field–Effect Transistors, 503</p>
<p>24.2.2 One–Dimensional Geometry of Nanowires and Nanotubes, 505</p>
<p>24.2.3 Density of States or Quantum Capacitance, 506</p>
<p>24.3 One–Dimensional FETs, 508</p>
<p>24.3.1 Impact of Dimensionality and Dependence on Effective Mass: 1D versus 2D, 508</p>
<p>24.3.2 Scaling to Quantum Capacitance Limit: Intrinsic Device Performance, 508</p>
<p>24.3.3 Extrinsic Device Performance, 510</p>
<p>24.4 Conclusion and Outlook, 512</p>
<p>References, 512</p>
<p>25 Nanowire Field–Effect Transistors for Electrical Interfacing with Cells and Tissue 515<br /> Bozhi Tian</p>
<p>25.1 Introduction, 515</p>
<p>25.1.1 How Nanowire (NW) Sensors Work, 515</p>
<p>25.1.2 Nanoscale Morphology for Cellular Interfacing, 516</p>
<p>25.2 Discussion, 516</p>
<p>25.2.1 Device Fabrication and Basic Characteristics, 516</p>
<p>25.2.2 Advantages of NWFET Sensing and Recording Systems, 517</p>
<p>25.2.3 Extracellular Interfaces of NWFET and Tissue/Cells, 518</p>
<p>25.2.4 Intracellular Interfaces of NWFET and Cells, 524</p>
<p>25.3 Conclusion and Outlook, 526</p>
<p>Acknowledgment, 528</p>
<p>References, 528</p>
<p>Author Biographies 531</p>
<p>Index 551</p>