Handbook of Membrane Reactors

Fundamental Materials Science, Design and Optimisation

Specificaties
Gebonden, blz. | Engels
Elsevier Science | e druk, 2013
ISBN13: 9780857094148
Rubricering
Elsevier Science e druk, 2013 9780857094148
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Membrane reactors are increasingly replacing conventional separation, process and conversion technologies across a wide range of applications. Exploiting advanced membrane materials, they offer enhanced efficiency, are very adaptable and have great economic potential. There has therefore been increasing interest in membrane reactors from both the scientific and industrial communities, stimulating research and development. The two volumes of the Handbook of membrane reactors draw on this research to provide an authoritative review of this important field.Volume 1 explores fundamental materials science, design and optimisation, beginning with a review of polymeric, dense metallic and composite membranes for membrane reactors in part one. Polymeric and nanocomposite membranes for membrane reactors, inorganic membrane reactors for hydrogen production, palladium-based composite membranes and alternatives to palladium-based membranes for hydrogen separation in membrane reactors are all discussed. Part two goes on to investigate zeolite, ceramic and carbon membranes and catalysts for membrane reactors in more depth. Finally, part three explores membrane reactor modelling, simulation and optimisation, including the use of mathematical modelling, computational fluid dynamics, artificial neural networks and non-equilibrium thermodynamics to analyse varied aspects of membrane reactor design and production enhancement.With its distinguished editor and international team of expert contributors, the two volumes of the Handbook of membrane reactors provide an authoritative guide for membrane reactor researchers and materials scientists, chemical and biochemical manufacturers, industrial separations and process engineers, and academics in this field.

Specificaties

ISBN13:9780857094148
Taal:Engels
Bindwijze:Gebonden

Inhoudsopgave

<p>Contributor contact details</p> <p>Woodhead Publishing Series in Energy</p> <p>Foreword</p> <p>Preface</p> <p>Part I: Polymeric, dense metallic and composite membranes for membrane reactors</p> <p>Chapter 1: Polymeric membranes for membrane reactors</p> <p>Abstract:</p> <p>1.1 Introduction: polymer properties for membrane reactors</p> <p>1.2 Basics of polymer membranes</p> <p>1.3 Membrane reactors</p> <p>1.4 Modelling of polymeric catalytic membrane reactors</p> <p>1.5 Conclusions</p> <p>1.7 Appendix: nomenclature</p> <p>Chapter 2: Inorganic membrane reactors for hydrogen production: an overview with particular emphasis on dense metallic membrane materials</p> <p>Abstract:</p> <p>2.1 Introduction</p> <p>2.2 Development of inorganic membrane reactors (MRs)</p> <p>2.3 Types of membranes</p> <p>2.4 Preparation of dense metallic membranes</p> <p>2.5 Preparation of Pd-composite membranes</p> <p>2.6 Preparation of Pd–Ag alloy membranes</p> <p>2.7 Preparation of Pd–Cu alloy composite membranes</p> <p>2.8 Preparation of Pd–Au membranes</p> <p>2.9 Preparation of amorphous alloy membranes</p> <p>2.10 Degradation of dense metallic membranes</p> <p>2.11 Conclusions and future trends</p> <p>2.12 Acknowledgements</p> <p>2.14 Appendix: nomenclature</p> <p>Chapter 3: Palladium-based composite membranes for hydrogen separation in membrane reactors</p> <p>Abstract:</p> <p>3.1 Introduction</p> <p>3.2 Development of composite membranes</p> <p>3.3 Palladium and palladium-alloy composite membranes for hydrogen separation</p> <p>3.4 Performances in membrane reactors</p> <p>3.5 Conclusions and future trends</p> <p>3.6 Acknowledgements</p> <p>3.8 Appendix: nomenclature</p> <p>Chapter 4: Alternatives to palladium in membranes for hydrogen separation: nickel, niobium and vanadium alloys, ceramic supports for metal alloys and porous glass membranes</p> <p>Abstract:</p> <p>4.1 Introduction</p> <p>4.2 Materials</p> <p>4.3 Membrane synthesis and characterization</p> <p>4.4 Applications</p> <p>4.5 Conclusions</p> <p>4.7 Appendix: nomenclature</p> <p>Chapter 5: Nanocomposite membranes for membrane reactors</p> <p>Abstract:</p> <p>5.1 Introduction</p> <p>5.2 An overview of fabrication techniques</p> <p>5.3 Examples of organic/inorganic nanocomposite membranes</p> <p>5.4 Structure-property relationships in nanostructured composite membranes</p> <p>5.5 Major application of hybrid nanocomposites in membrane reactors</p> <p>5.6 Conclusions and future trends</p> <p>5.8 Appendix: nomenclature</p> <p>Part II: Zeolite, ceramic and carbon membranes and catalysts for membrane reactors</p> <p>Chapter 6: Zeolite membrane reactors</p> <p>Abstract:</p> <p>6.1 Introduction</p> <p>6.2 Separation using zeolite membranes</p> <p>6.3 Zeolite membrane reactors</p> <p>6.4 Modeling of zeolite membrane reactors</p> <p>6.5 Scale-up and scale-down of zeolite membranes</p> <p>6.6 Conclusion and future trends</p> <p>6.8 Appendix: nomenclature</p> <p>Chapter 7: Dense ceramic membranes for membrane reactors</p> <p>Abstract:</p> <p>7.1 Introduction</p> <p>7.2 Principles of dense ceramic membrane reactors</p> <p>7.3 Membrane preparation and catalyst incorporation</p> <p>7.4 Fabrication of membrane reactors</p> <p>7.5 Conclusion and future trends</p> <p>7.6 Acknowledgements</p> <p>7.8 Appendices</p> <p>Chapter 8: Porous ceramic membranes for membrane reactors</p> <p>Abstract:</p> <p>8.1 Introduction</p> <p>8.2 Preparation of porous ceramic membranes</p> <p>8.3 Characterisation of ceramic membranes</p> <p>8.4 Transport and separation of gases in ceramic membranes</p> <p>8.5 Ceramic membrane reactors</p> <p>8.6 Conclusions and future trends</p> <p>8.7 Acknowledgements</p> <p>8.9 Appendix: nomenclature</p> <p>Chapter 9: Microporous silica membranes: fundamentals and applications in membrane reactors for hydrogen separation</p> <p>Abstract:</p> <p>9.1 Introduction</p> <p>9.2 Microporous silica membranes</p> <p>9.3 Membrane reactor function and arrangement</p> <p>9.4 Membrane reactor performance metrics and design parameters</p> <p>9.5 Catalytic reactions in a membrane reactor configuration</p> <p>9.6 Industrial considerations</p> <p>9.7 Future trends and conclusions</p> <p>9.8 Acknowledgements</p> <p>9.10 Appendix: nomenclature</p> <p>Chapter 10: Carbon-based membranes for membrane reactors</p> <p>Abstract:</p> <p>10.1 Introduction</p> <p>10.2 Unsupported carbon membranes</p> <p>10.3 Supported carbon membranes</p> <p>10.4 Carbon membrane reactors (CMRs)</p> <p>10.5 Micro carbon-based membrane reactors</p> <p>10.6 Conclusions and future trends</p> <p>10.7 Acknowledgements</p> <p>10.9 Appendix: nomenclature</p> <p>Chapter 11: Advances in catalysts for membrane reactors</p> <p>Abstract:</p> <p>11.1 Introduction</p> <p>11.2 Requirements of catalysts for membrane reactors</p> <p>11.3 Catalyst design, preparation and formulation</p> <p>11.4 Case studies in membrane reactors</p> <p>11.5 Deactivation of catalysts</p> <p>11.6 The role of catalysts in supporting sustainability</p> <p>11.7 Conclusions and future trends</p> <p>11.9 Appendix: nomenclature</p> <p>Part III: Membrane reactor modelling, simulation and optimisation</p> <p>Chapter 12: Mathematical modelling of membrane reactors: overview of strategies and applications for the modelling of a hydrogen-selective membrane reactor</p> <p>Abstract:</p> <p>12.1 Introduction</p> <p>12.2 Membrane reactor concept and modelling</p> <p>12.3 A hydrogen-selective membrane reactor application: natural gas steam reforming</p> <p>12.4 Conclusions</p> <p>12.5 Acknowledgements</p> <p>12.7 Appendix: nomenclature</p> <p>Chapter 13: Computational fluid dynamics (CFD) analysis of membrane reactors: simulation of single-and multi-tube palladium membrane reactors for hydrogen recovery from cyclohexane</p> <p>Abstract:</p> <p>13.1 Introduction</p> <p>13.2 Single palladium membrane tube reactor</p> <p>13.4 Conclusions and future trends</p> <p>13.6 Appendix: nomenclature</p> <p>Chapter 14: Computational fluid dynamics (CFD) analysis of membrane reactors: simulation of a palladium-based membrane reactor in fuel cell micro-cogenerator system</p> <p>Abstract:</p> <p>14.1 Introduction</p> <p>14.2 Polymer electrolyte membrane fuel cell (PEMFC) micro-cogenerator systems and MREF</p> <p>14.3 Model description and assumptions</p> <p>14.4 Simulation results and discussion of modelling issues</p> <p>14.5 Conclusion and future trends</p> <p>14.6 Acknowledgements</p> <p>14.8 Appendix: nomenclature</p> <p>Chapter 15: Computational fluid dynamics (CFD) analysis of membrane reactors: modelling of membrane bioreactors for municipal wastewater treatment</p> <p>Abstract:</p> <p>15.1 Introduction</p> <p>15.2 Design of the membrane bioreactor (MBR)</p> <p>15.3 Computational fluid dynamics (CFD)</p> <p>15.4 CFD modelling for MBR applications</p> <p>15.5 Model calibration and validation techniques</p> <p>15.6 Future trends and conclusions</p> <p>15.7 Acknowledgement</p> <p>15.9 Appendix: nomenclature</p> <p>Chapter 16: Models of membrane reactors based on artificial neural networks and hybrid approaches</p> <p>Abstract:</p> <p>16.1 Introduction</p> <p>16.2 Fundamentals of artificial neural networks</p> <p>16.3 An overview of hybrid modeling</p> <p>16.4 Case study: prediction of permeate flux decay during ultrafiltration performed in pulsating conditions by a neural model</p> <p>16.5 Case study: prediction of permeate flux decay during ultrafiltration performed in pulsating conditions by a hybrid neural model</p> <p>16.6 Case study: implementation of feedback control systems based on hybrid neural models</p> <p>16.7 Conclusions</p> <p>16.9 Appendix: nomenclature</p> <p>Chapter 17: Assessment of the key properties of materials used in membrane reactors by quantum computational approaches</p> <p>Abstract:</p> <p>17.1 Introduction</p> <p>17.2 Basic concepts of computational approaches</p> <p>17.3 Gas adsorption in porous nanostructured materials</p> <p>17.4 Adsorption and absorption of hydrogen and small gases</p> <p>17.5 Conclusions and future trends</p> <p>17.7 Appendix: nomenclature</p> <p>Chapter 18: Non-equilibrium thermodynamics for the description of transport of heat and mass across a zeolite membrane</p> <p>Abstract:</p> <p>18.1 Introduction</p> <p>18.2 Fluxes and forces from the second law and transport coefficients</p> <p>18.3 Case studies of heat and mass transport across the zeolite membrane</p> <p>18.4 Conclusions and future trends</p> <p>18.5 Acknowledgement</p> <p>18.7 Appendix: nomenclature</p> <p>Index</p>

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Handbook of Membrane Reactors