,

Applications of ATILA FEM Software to Smart Materials

Case Studies in Designing Devices

Specificaties
Gebonden, blz. | Engels
Elsevier Science | e druk, 2012
ISBN13: 9780857090652
Rubricering
Elsevier Science e druk, 2012 9780857090652
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

ATILA Finite Element Method (FEM) software facilitates the modelling and analysis of applications using piezoelectric, magnetostrictor and shape memory materials. It allows entire designs to be constructed, refined and optimized before production begins. Through a range of instructive case studies, Applications of ATILA FEM software to smart materials provides an indispensable guide to the use of this software in the design of effective products.

Part one provides an introduction to ATILA FEM software, beginning with an overview of the software code. New capabilities and loss integration are discussed, before part two goes on to present case studies of finite element modelling using ATILA. The use of ATILA in finite element analysis, piezoelectric polarization, time domain analysis of piezoelectric devices and the design of ultrasonic motors is considered, before piezo-composite and photonic crystal applications are reviewed. The behaviour of piezoelectric single crystals for sonar and thermal analysis in piezoelectric and magnetostrictive materials is also discussed, before a final reflection on the use of ATILA in modelling the damping of piezoelectric structures and the behaviour of single crystal devices.

With its distinguished editors and international team of expert contributors, Applications of ATILA FEM software to smart materials is a key reference work for all those involved in the research, design, development and application of smart materials, including electrical and mechanical engineers, academics and scientists working in piezoelectrics, magenetostrictors and shape memory materials.

Specificaties

ISBN13:9780857090652
Taal:Engels
Bindwijze:Gebonden

Inhoudsopgave

<p>Contributor contact details</p> <p>Woodhead Publishing Series in Electronic and Optical Materials</p> <p>Part I: Introduction to the ATILA finite element method (FEM) software</p> <p>Chapter 1: Overview of the ATILA finite element method (FEM) software code</p> <p>Abstract:</p> <p>1.1 An introduction to finite element analysis</p> <p>1.2 Defining the equations for the problem</p> <p>1.3 Application of the finite element method (FEM)</p> <p>1.4 Finite element method (FEM) simulation examples</p> <p>1.5 Conclusion</p> <p>Chapter 2: The capabilities of the new version of ATILA</p> <p>Abstract:</p> <p>2.1 Introduction</p> <p>2.2 The new version of ATILA</p> <p>2.3 Pre- and post-processor GiD</p> <p>2.4 New capacities in ATILA/GiD</p> <p>2.5 Time comparison between ATILA and ATILA++</p> <p>2.6 Conclusion</p> <p>Chapter 3: Loss integration in ATILA software</p> <p>Abstract:</p> <p>3.1 Introduction: nonlinear and hysteresis characteristics</p> <p>3.2 Heat generation</p> <p>3.3 Hysteresis estimation program</p> <p>3.4 Conclusion</p> <p>Part II: Case studies of finite element modelling using ATILA</p> <p>Chapter 4: Finite element analysis of flexural vibration of orthogonally stiffened cylindrical shells with ATILA</p> <p>Abstract:</p> <p>4.1 Introduction</p> <p>4.2 Shell formulation</p> <p>4.3 Stiffened shell finite element</p> <p>4.4 Validation</p> <p>4.5 Conclusion</p> <p>Chapter 5: Utilization of piezoelectric polarization in ATILA: usual to original</p> <p>Abstract:</p> <p>5.1 Introduction</p> <p>5.2 Piezoelectric effect</p> <p>5.3 Utilization of the Cartesian polarization: Cartesian coordinates</p> <p>5.4 Utilization of the Cartesian polarization: cylindrical coordinates</p> <p>5.5 Utilization of the cylindrical polarization: cylindrical coordinates</p> <p>5.6 Original polarization</p> <p>Conclusion</p> <p>5.7 Conclusion</p> <p>Chapter 6: Time domain analysis of piezoelectric devices with the transient module in ATILA</p> <p>Abstract:</p> <p>6.1 Introduction</p> <p>6.2 Key design issues and parameters</p> <p>6.3 Step-by-step use of ATILA transient module</p> <p>6.4 Conclusion and future trends</p> <p>Chapter 7: Designing ultrasonic motors (USM) with ATILA</p> <p>Abstract:</p> <p>7.1 Introduction</p> <p>7.2 Procedure for finite element method (FEM) analysis – ATILA</p> <p>7.3 Tiny ultrasonic motor (USM)</p> <p>7.4 Butterfly-shaped ultrasonic linear motor</p> <p>7.5 Conclusions</p> <p>Chapter 8: Piezocomposite applications of ATILA</p> <p>Abstract:</p> <p>8.1 Introduction</p> <p>8.2 General formulation</p> <p>8.3 Transmission coefficient of an Alberich coating</p> <p>8.4 1–3 piezocomposite</p> <p>8.5 Conclusion</p> <p>Chapter 9: Phononic crystal (PC) applications of ATILA</p> <p>Abstract:</p> <p>9.1 Introduction</p> <p>9.2 General formulation</p> <p>9.3 Phononic crystals for guiding applications</p> <p>9.4 Phononic crystals for negative refraction applications</p> <p>9.5 Conclusion</p> <p>Chapter 10: Studying the behavior of piezoelectric single crystals for sonar using ATILA</p> <p>Abstract:</p> <p>10.1 Introduction</p> <p>10.2 State of the art single crystal technology</p> <p>10.3 Modeling the behavior of single crystal materials using ATILA software</p> <p>10.4 The experiment</p> <p>10.5 Analysis of results</p> <p>10.6 The analytic model</p> <p>10.7 Conclusion</p> <p>10.8 Acknowledgments</p> <p>Chapter 11: Thermal analysis in piezoelectric and magnetostrictive materials using ATILA</p> <p>Abstract:</p> <p>11.1 Introduction</p> <p>11.2 Heat generation in piezoelectric materials</p> <p>11.3 Implementation of ATILA for the thermal analysis of piezoelectric materials</p> <p>11.4 Strains and stresses in piezoelectric materials caused by thermal effects</p> <p>11.5 Numerical validation of the model</p> <p>11.6 Experimental validation of the model</p> <p>11.7 Heat generation in magnetostrictive materials</p> <p>11.8 Temperature in an internal cavity in a magnetostrictive transducer</p> <p>11.9 Conclusion</p> <p>Chapter 12: Modelling the damping of piezoelectric structures with ATILA</p> <p>Abstract:</p> <p>12.1 Introduction</p> <p>12.2 Circuit coupled simulation method</p> <p>12.3 Semi-active damping method</p> <p>12.4 Applications</p> <p>Chapter 13: Modelling the behaviour of single crystal devices with ATILA: the effect of temperature and stress on a single crystal bar, tonpilz and sphere submitted to a harmonic analysis</p> <p>Abstract:</p> <p>13.1 Introduction</p> <p>13.2 Single crystal dependence</p> <p>13.3 Non-linear analysis</p> <p>13.4 Harmonic analysis of a length expander bar with parallel field</p> <p>13.5 Harmonic analysis of a single crystal tonpilz transducer</p> <p>13.6 Harmonic analysis of a single crystal bar with a bolt</p> <p>13.7 Harmonic analysis of a single crystal thin sphere in air</p> <p>13.8 Harmonic analysis of a single crystal thin shell in water: an analytical solution</p> <p>13.9 Conclusion</p> <p>Index</p>

Rubrieken

    Personen

      Trefwoorden

        Applications of ATILA FEM Software to Smart Materials