,

Modeling Differential Equations in Biology

Specificaties
Paperback, 526 blz. | Engels
Cambridge University Press | e druk, 2008
ISBN13: 9780521708432
Rubricering
Cambridge University Press e druk, 2008 9780521708432
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Based on a very successful one-semester course taught at Harvard, this text teaches students in the life sciences how to use differential equations to help their research. It needs only a semester's background in calculus. Ideas from linear algebra and partial differential equations that are most useful to the life sciences are introduced as needed, and in the context of life science applications, are drawn from real, published papers. It also teaches students how to recognize when differential equations can help focus research. A course taught with this book can replace the standard course in multivariable calculus that is more usually suited to engineers and physicists.

Specificaties

ISBN13:9780521708432
Taal:Engels
Bindwijze:Paperback
Aantal pagina's:526

Inhoudsopgave

1. Introduction; 2. Exponential growth with appendix on Taylor's theorem; 3. Introduction to differential equations; 4. Stability in a one component system; 5. Systems of first order differential equations; 6. Phase plane analysis; 7. Introduction to vectors; 8. Equilibrium in two component, linear systems; 9. Stability in non-linear systems; 10. Non-linear stability again; 11. Matrix notation; 12. Remarks about Australian predators; 13. Introduction to advection; 14. Diffusion equations; 15. Two key properties of the advection and diffusion equations; 16. The no trawling zone; 17. Separation of variables; 18. The diffusion equation and pattern formation; 19. Stability criteria; 20. Summary of advection and diffusion; 21. Traveling waves; 22. Traveling wave velocities; 23. Periodic solutions; 24. Fast and slow; 25. Estimating elapsed time; 26. Switches; 27. Testing for periodicity; 28. Causes of chaos; Extra exercises and solutions; Index.

Rubrieken

    Personen

      Trefwoorden

        Modeling Differential Equations in Biology