The Neuroethology of Predation and Escape
Samenvatting
The forces of natural selection have been a primary driver in the evolution of adaptive animal behaviours. On the one hand animals must evade predation in order to survive and pass on their genes; on other hand, and for the same underlying reasons, animals must also be capable of successfully capturing prey. This situation has led to an evolutionary arms race in which predator and prey are locked in the battle to survive. A common strategy in each situation is to enhance the speed of response, resulting in the evolution of neural, muscular and biomechanical designs that produce supremely fast and eye–catching behavioral responses.
The aim of this book is to illuminate the design principles of escape and predatory behaviours using a series of case histories from different animal groups and to emphasize the convergent evolution of neural circuitry that optimizes the chances of survival. Using these case histories the authors describe sensory mechanisms that aid prey and predator detection, central neural circuit designs that increase speed of response and neuromuscular and biomechanical properties that aid the performance of escape and predatory movements.
Specificaties
Inhoudsopgave
<p>What this book is about, xiii</p>
<p>How this book is organised, xv</p>
<p>Who this book is for, xvi</p>
<p>Acknowledgements, xvi</p>
<p>References, xvii</p>
<p>1 Vision, 2</p>
<p>1.1 The electromagnetic spectrum, 3</p>
<p>1.2 Eyes: acuity and sensitivity, 5</p>
<p>1.2.1 Foveae, 6</p>
<p>1.3 Feature recognition and releasing behaviour, 8</p>
<p>1.4 Prey capture in toads, 9</p>
<p>1.4.1 Attack or avoid: worms and anti –worms , 9</p>
<p>1.4.2 Retinal processing, 11</p>
<p>1.4.3 Feature detector neurons, 12</p>
<p>1.4.4 Modulation and plasticity, 14</p>
<p>1.4.5 Toad prey capture: the insects fight back, 15</p>
<p>1.5 Beyond the visible spectrum, 16</p>
<p>1.5.1 Pit organs, 16</p>
<p>1.5.2 Thermotransduction, 20</p>
<p>1.5.3 Brain processing and cross –modal integration, 21</p>
<p>1.5.4 Behaviour, 22</p>
<p>1.5.5 Infrared defence signals, 25</p>
<p>1.6 Aerial predators: dragonfly vision, 27</p>
<p>1.6.1 Dragonfly eyes, 27</p>
<p>1.6.2 Aerial pursuit, 28</p>
<p>1.6.3 Predictive foveation, 29</p>
<p>1.6.4 Reactive steering: STMDs and TSDNs, 30</p>
<p>1.7 Summary, 31</p>
<p>Abbreviations, 32</p>
<p>References, 32</p>
<p>2 Olfaction, 36</p>
<p>2.1 Mechanisms of olfaction, 38</p>
<p>2.1.1 Detection and specificity, 38</p>
<p>2.1.2 Olfactory sub –systems, 40</p>
<p>2.1.3 Brain processing, 41</p>
<p>2.2 Olfactory tracking and localisation, 41</p>
<p>2.3 Pheromones and kairomones, 45</p>
<p>2.3.1 Alarm pheromones, 45</p>
<p>2.3.2 Predator odours, 46</p>
<p>2.3.3 Dual purpose signals: the MUP family, 47</p>
<p>2.3.4 Parasites: when kairomones go bad!, 49</p>
<p>2.4 Summary, 50</p>
<p>Abbreviations, 51</p>
<p>References, 51</p>
<p>3 Owl Hearing, 54</p>
<p>3.1 Timing and intensity, 56</p>
<p>3.2 Owl sound localisation mechanisms, 58</p>
<p>3.3 Anatomy, 60</p>
<p>3.4 Neural computation, 61</p>
<p>3.4.1 The auditory map, 62</p>
<p>3.4.2 Early stage processing, 66</p>
<p>3.4.3 ITD processing, 69</p>
<p>3.4.4 IID processing, 76</p>
<p>3.5 Combining ITD and IID specificity in the inferior colliculus, 77</p>
<p>3.6 Audio –visual integration and experience –dependent tuning of the auditory map, 78</p>
<p>3.6.1 Audio –visual discrepancy can re –map the ICC –ICX connections, 80</p>
<p>3.6.2 Motor adaptation, 82</p>
<p>3.6.3 Age and experience matter!, 82</p>
<p>3.6.4 Cellular mechanisms of re –mapping, 82</p>
<p>3.7 Summary, 83</p>
<p>Abbreviations, 84</p>
<p>References, 85</p>
<p>4 Mammalian Hearing, 88</p>
<p>4.1 Spectral cues, 90</p>
<p>4.1.1 Neural processing of spectral cues, 90</p>
<p>4.2 Binaural processing, 92</p>
<p>4.2.1 IID processing, 93</p>
<p>4.2.2 ITD processing, 94</p>
<p>4.2.3 Calyx of Held, 99</p>
<p>4.3 Do mammals have a space map like owls? 100</p>
<p>4.4 Comparative studies in mammals, 101</p>
<p>4.5 Summary, 102</p>
<p>4.5.1 Caveats, 102</p>
<p>Abbreviations, 102</p>
<p>References, 103</p>
<p>5 The Biosonar System of Bats, 106</p>
<p>5.1 Bat echolocation, 107</p>
<p>5.1.1 Why ultrasound? 108</p>
<p>5.1.2 Range limits, 109</p>
<p>5.2 The sound production system, 109</p>
<p>5.2.1 Types of sound: CF and FM pulses, 110</p>
<p>5.2.2 Echolocation in predation: a three –phase attack strategy, 112</p>
<p>5.2.3 Duty cycle and pulse –echo overlap, 113</p>
<p>5.3 The sound reception system, 114</p>
<p>5.3.1 Bats have big ears, 114</p>
<p>5.3.2 Peripheral specialisations: automatic gain control and acoustic fovea, 115</p>
<p>5.4 Eco –physiology: different calls for different situations, 116</p>
<p>5.4.1 Target discovery, 117</p>
<p>5.4.2 Target range and texture, 118</p>
<p>5.4.3 Target location, 119</p>
<p>5.4.4 Target velocity: the Doppler shift, 119</p>
<p>5.4.5 Target identity: flutter detection, 121</p>
<p>5.4.6 Jamming avoidance response, 123</p>
<p>5.4.7 Food competition and intentional jamming, 123</p>
<p>5.5 Brain mechanisms of echo detection, 124</p>
<p>5.5.1 The auditory cortex, 125</p>
<p>5.5.2 Range and size analysis: the FM –FM area, 125</p>
<p>5.5.3 Velocity analysis: the CF –CF area, 128</p>
<p>5.5.4 Fine frequency analysis: the DSCF area, 130</p>
<p>5.6 Evolutionary considerations, 131</p>
<p>5.7 The insects fight back, 132</p>
<p>5.7.1 Moth ears and evasive action, 132</p>
<p>5.7.2 Bad taste, 133</p>
<p>5.7.3 Shouting back, 134</p>
<p>5.8 Final thoughts, 135</p>
<p>5.9 Summary, 136</p>
<p>Abbreviations, 137</p>
<p>References, 137</p>
<p>6 Electrolocation and Electric Organs, 140</p>
<p>6.1 Passive electrolocation, 142</p>
<p>6.1.1 Ampullary electroreceptors, 142</p>
<p>6.1.2 Prey localisation, 145</p>
<p>6.1.3 Mammalian electrolocation, 146</p>
<p>6.2 Electric fish, 148</p>
<p>6.3 Strongly electric fish, 151</p>
<p>6.3.1 Freshwater fish: the electric eel, 151</p>
<p>6.3.2 Marine fish: The electric ray, 156</p>
<p>6.3.3 Avoiding self –electrocution, 158</p>
<p>6.4 Active electrolocation, 158</p>
<p>6.4.1 Weakly electric fish, 158</p>
<p>6.4.2 Tuberous electroreceptors, 161</p>
<p>6.4.3 Brain maps for active electrolocation, 163</p>
<p>6.4.4 Avoiding detection, mostly, 164</p>
<p>6.4.5 Frequency niches, 166</p>
<p>6.4.6 The jamming avoidance response, 167</p>
<p>6.5 Summary, 174</p>
<p>Abbreviations, 175</p>
<p>References, 175</p>
<p>7 The Crayfish Escape Tail –Flip, 178</p>
<p>7.1 Invertebrate vs. vertebrate nervous systems, 179</p>
<p>7.2 Tail –flip form and function, 180</p>
<p>7.3 Command neurons, 182</p>
<p>7.4 Motor output, 184</p>
<p>7.4.1 Directional control, 184</p>
<p>7.4.2 Rectifying electrical synapses, 186</p>
<p>7.4.3 Depolarising inhibition, 188</p>
<p>7.4.4 FF drive and the segmental giant neuron, 189</p>
<p>7.4.5 Limb activity during GF tail –flips, 189</p>
<p>7.4.6 Tail extension, 190</p>
<p>7.4.7 Non –giant tail –flips, 190</p>
<p>7.5 Activation of GF tail –flips, 191</p>
<p>7.5.1 Coincidence detection, 193</p>
<p>7.5.2 Habituation and prevention of self –stimulation, 195</p>
<p>7.6 Modulation and neuroeconomics, 196</p>
<p>7.6.1 Mechanisms of modulation, 197</p>
<p>7.6.2 Serotonin modulation, 198</p>
<p>7.7 Social status, serotonin and the crayfish tail –flip, 198</p>
<p>7.7.1 Social status effects on tail –flip threshold, 199</p>
<p>7.7.2 Serotonin effects on tail –flip threshold depend on social status, 200</p>
<p>7.8 Evolution and adaptations of the tail –flip circuitry, 202</p>
<p>7.8.1 Penaeus: a unique myelination mechanism gives ultra –rapid conduction, 205</p>
<p>7.9 Summary, 208</p>
<p>Abbreviations, 208</p>
<p>References, 209</p>
<p>8 Fish Escape: the Mauthner System, 212</p>
<p>8.1 Fish ears and the lateral line, 214</p>
<p>8.1.1 Directional sensitivity, 215</p>
<p>8.2 Mauthner cells, 215</p>
<p>8.2.1 Biophysical properties, 217</p>
<p>8.3 Sensory inputs to M –cells, 218</p>
<p>8.3.1 Feedforward inhibition and threshold setting, 220</p>
<p>8.3.2 PHP neurons: electrical inhibition, 220</p>
<p>8.4 Directional selectivity and the lateral line, 222</p>
<p>8.4.1 Obstacle avoidance, 223</p>
<p>8.5 M –cell output, 223</p>
<p>8.5.1 Feedback electrical inhibition: collateral PHP neurons, 223</p>
<p>8.5.2 Spinal motor output, 224</p>
<p>8.5.3 Spinal inhibitory interneurons: CoLos, 224</p>
<p>8.6 The Mauthner system: command, control and flexibility, 226</p>
<p>8.7 Stage 2 and beyond, 230</p>
<p>8.8 Social status and escape threshold, 230</p>
<p>8.9 Adaptations and modifications of the M –circuit, 233</p>
<p>8.10 Predators fight back: the amazing tentacled snake, 235</p>
<p>8.11 Summary, 239</p>
<p>Abbreviations, 239</p>
<p>References, 240</p>
<p>9 The Mammalian Startle Response, 244</p>
<p>9.1 Pathologies, 246</p>
<p>9.2 Neural circuitry of the mammalian startle response, 248</p>
<p>9.3 Modulation of startle, 250</p>
<p>9.4 Summary, 250</p>
<p>Abbreviations, 251</p>
<p>References, 251</p>
<p>10 The Ballistic Attack of Archer Fish, 254</p>
<p>10.1 The water pistol, 255</p>
<p>10.2 Perceptual problems and solutions, 257</p>
<p>10.3 Learning to shoot, 260</p>
<p>10.4 Prey retrieval by archer fish, 261</p>
<p>10.4.1 Computing the landing point, 262</p>
<p>10.4.2 Orientation, 263</p>
<p>10.4.3 Dash to the target, 264</p>
<p>10.5 Summary, 264</p>
<p>References, 265</p>
<p>11 Catapults for Attack and Escape, 266</p>
<p>11.1 The bow and arrow, 268</p>
<p>11.2 Catapults require multi –stage motor programmes, 269</p>
<p>11.3 Grasshopper jumping, 270</p>
<p>11.3.1 Biomechanics, 270</p>
<p>11.3.2 The behaviour, 270</p>
<p>11.3.3 The hind legs, 271</p>
<p>11.3.4 The motor programme, 273</p>
<p>11.3.5 Directional control, 279</p>
<p>11.3.6 Evolution of the grasshopper strategy, 279</p>
<p>11.4 Froghoppers: the champion insect jumpers, 280</p>
<p>11.4.1 Ratchet locks, 282</p>
<p>11.4.2 Synchronisation, 282</p>
<p>11.5 Mantis shrimps, 284</p>
<p>11.5.1 Mantis shrimp catapults, 285</p>
<p>11.5.2 Cavitation bubbles, 287</p>
<p>11.6 Snapping (pistol) shrimps, 288</p>
<p>11.7 Multi –function mouthparts: the trap –jaw ant, 291</p>
<p>11.8 Prey capture with prehensile tongues, 293</p>
<p>11.8.1 The chameleon tongue: sliding springs and supercontracting muscles, 293</p>
<p>11.8.2 Salamander tongue projection, 297</p>
<p>11.9 Temperature independence of catapults, 300</p>
<p>11.10 Summary, 300</p>
<p>Abbreviations, 301</p>
<p>References, 301</p>
<p>12 Molluscan Defence and Escape Systems, 304</p>
<p>12.1 Squid jet propulsion, 306</p>
<p>12.1.1 Biomechanics, 306</p>
<p>12.1.2 Neural circuitry, 307</p>
<p>12.1.3 Jetting behaviour, 311</p>
<p>12.2 Inking, 312</p>
<p>12.2.1 Neuroecology of inking, 314</p>
<p>12.2.2 Neural circuitry of inking, 315</p>
<p>12.3 Cephalopod colour and shape control, 316</p>
<p>12.3.1 Chromatophores, 317</p>
<p>12.3.2 Iridophores, 319</p>
<p>12.3.3 Leucophores, 321</p>
<p>12.3.4 Photophores, 321</p>
<p>12.3.5 Body shape and dermal papillae, 322</p>
<p>12.4 Summary, 323</p>
<p>Abbreviations, 323</p>
<p>References, 323</p>
<p>13 Neurotoxins for Attack and Defence, 326</p>
<p>13.1 Cone snails, 328</p>
<p>13.1.1 The biology of cone snail envenomation, 329</p>
<p>13.1.2 Conopeptides, 333</p>
<p>13.1.3 The billion dollar mollusc, 340</p>
<p>13.1.4 Rapid conch escape, 341</p>
<p>13.2 The neuroethology of zombie cockroaches, 343</p>
<p>13.2.1 Sensory mechanisms of stinger precision, 344</p>
<p>13.2.2 Transient paralysis, 345</p>
<p>13.2.3 Intense grooming, 346</p>
<p>13.2.4 Docile hypokinesia, 346</p>
<p>13.3 Venom resistance, 347</p>
<p>13.3.1 Targeting pain pathways, 350</p>
<p>13.3.2 From pain to analgesia, 350</p>
<p>13.4 Summary, 352</p>
<p>Abbreviations, 352</p>
<p>References, 352</p>
<p>14 Concluding Thoughts, 356</p>
<p>14.1 The need for speed, 358</p>
<p>14.2 Safety in numbers, 360</p>
<p>14.3 The unbalancing influences of humankind, 361</p>
<p>References, 363</p>
<p>Index, 364</p>