Infrared and Raman Spectroscopy in Forensic Science
Samenvatting
This book will provide a survey of the major areas in which information derived from vibrational spectroscopy investigations and studies have contributed to the benefit of forensic science, either in a complementary or a unique way. This is highlighted by examples taken from real case studies and analyses of forensic relevance, which provide a focus for current and future applications and developments.
Specificaties
Inhoudsopgave
<p>List of Contributors xxiii</p>
<p>Preface xxvii</p>
<p>SECTION I: INTRODUCTION 1</p>
<p>1 Introduction and Scope 3<br /> John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves</p>
<p>1.1 Historical Prologue 3</p>
<p>1.2 The Application of Infrared Spectroscopy and Raman Spectroscopy in Forensic Science 5</p>
<p>References 7</p>
<p>2 Vibrational Spectroscopy Techniques: Basics and Instrumentation 9<br /> John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves</p>
<p>2.1 Introduction 9</p>
<p>2.2 Vibrational Spectroscopy Techniques 9</p>
<p>2.2.1 The basics and some comparisons 9</p>
<p>2.2.1.1 Wavelength/Wavenumber Ranges and Selection Rules 10</p>
<p>2.2.1.2 Sampling Considerations 12</p>
<p>2.2.1.3 Sensitivity, Surfaces and Signal Enhancement Techniques 13</p>
<p>2.2.1.4 IR and Raman Bands 13</p>
<p>2.2.2 Quantitative and classification analyses 16</p>
<p>2.2.2.1 Multivariate Data Analyses 17</p>
<p>2.2.2.2 Data Pre–Processing 20</p>
<p>2.2.3 Reference databases and search libraries/algorithms 20</p>
<p>2.3 Vibrational Spectroscopy: Instrumentation 22</p>
<p>2.3.1 Spectrometers 22</p>
<p>2.3.1.1 Sources 22</p>
<p>2.3.1.2 Detectors 24</p>
<p>2.3.1.3 Spectrometers and Interferometers 24</p>
<p>2.3.2 Vibrational spectroscopy microscopy systems 28</p>
<p>2.3.2.1 Mapping and Imaging 30</p>
<p>2.3.3 Fibre optics and fibre–optic probes 34</p>
<p>2.3.4 Remote, portable, handheld, field–use, and stand–off vibrational spectroscopy instrumentation 35</p>
<p>2.4 Closing Remarks 40</p>
<p>References 40</p>
<p>3 Vibrational Spectroscopy Sampling Techniques 45<br /> John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves</p>
<p>3.1 Introduction 45</p>
<p>3.2 Vibrational Spectroscopy: Sampling Techniques 47</p>
<p>3.2.1 Raman spectroscopy 47</p>
<p>3.2.1.1 Raman Spectroscopy: Sampling Techniques and Considerations 47</p>
<p>3.2.1.2 Resonance Raman Spectroscopy 50</p>
<p>3.2.1.3 Surface Enhanced Raman Spectroscopy and Surface Enhanced Resonance Raman Spectroscopy 51</p>
<p>3.2.1.4 Spatially Offset Raman Spectroscopy 51</p>
<p>3.2.1.5 Transmission Raman Spectroscopy 55</p>
<p>3.2.1.6 Raman Microscopy/Microspectroscopy and Imaging 55</p>
<p>3.2.1.7 Remote and Fibre–Optic Probe Raman Spectroscopy 56</p>
<p>3.2.2 Mid–infrared spectroscopy 58</p>
<p>3.2.2.1 Mid–Infrared Transmission Spectroscopy: Sampling Techniques 58</p>
<p>3.2.2.2 Mid–Infrared Reflection Spectroscopy Sampling Techniques 62</p>
<p>3.2.2.3 Mid–Infrared Photoacoustic Spectroscopy 70</p>
<p>3.2.2.4 Mid–Infrared Microscopy/Microspectroscopy and Imaging 71</p>
<p>3.2.3 Near–infrared spectroscopy: sampling techniques 76</p>
<p>3.2.3.1 Near–Infrared Transmission Spectroscopy 77</p>
<p>3.2.3.2 Near–Infrared Diffuse Reflection Spectroscopy 77</p>
<p>3.2.3.3 Near–Infrared Transflection Spectroscopy 78</p>
<p>3.2.3.4 Near–Infrared Spectroscopy: Interactance and Fibre–Optic Probe Measurements 78</p>
<p>3.2.3.5 Near–Infrared Microscopy and Imaging 79</p>
<p>3.2.4 Terahertz/far–infrared spectroscopy: sampling techniques 79</p>
<p>3.3 Closing Remarks 81</p>
<p>Acknowledgements 81</p>
<p>References 82</p>
<p>SECTION II: CRIMINAL SCENE 87</p>
<p>4 Criminal Forensic Analysis 89<br /> Edward G. Bartick</p>
<p>4.1 Introduction 89</p>
<p>4.2 Forensic Analysis 90</p>
<p>4.3 General Use of IR and Raman Spectroscopy in Forensic Analysis 91</p>
<p>4.3.1 Progression of infrared spectroscopy development in forensic analysis 91</p>
<p>4.3.2 Progression of Raman spectroscopy development in forensic analysis 91</p>
<p>4.3.3 Sampling methods 91</p>
<p>4.3.3.1 Microscopes 91</p>
<p>4.3.3.2 Reflection Methods 92</p>
<p>4.3.3.3 Gas Chromatography/IR 92</p>
<p>4.3.3.4 Spectral Imaging 92</p>
<p>4.4 Applications of Evidential Material Analysis 93</p>
<p>4.4.1 Polymers 93</p>
<p>4.4.1.1 General 93</p>
<p>4.4.1.2 Copy Toners 94</p>
<p>4.4.1.3 Fibres 95</p>
<p>4.4.1.4 Paints 98</p>
<p>4.4.1.5 Tapes 99</p>
<p>4.4.2 Drugs 101</p>
<p>4.4.3 Explosives 103</p>
<p>4.4.4 Fingerprint analysis 104</p>
<p>4.5 Summary and Future Direction 105</p>
<p>Acknowledgements 106</p>
<p>References 106</p>
<p>4.1 Forensic Analysis of Hair by Infrared Spectroscopy 111<br /> Kathryn S. Kalasinsky</p>
<p>4.1.1 Introduction 111</p>
<p>4.1.2 Basic Forensic Hair Analysis 113</p>
<p>4.1.3 Uniqueness of Hair to Chemical Analysis 114</p>
<p>4.1.4 Mechanism for Chemical Substance Incorporation into Hair 115</p>
<p>4.1.5 Applications 118</p>
<p>4.1.6 Disease Diagnosis 119</p>
<p>4.1.7 Summary 119</p>
<p>References 119</p>
<p>4.2 Raman Spectroscopy for Forensic Analysis of Household and Automotive Paints 121<br /> Steven E.J. Bell, Samantha P. Stewart and W.J. Armstrong</p>
<p>4.2.1 Introduction 121</p>
<p>4.2.2 Paint Composition 121</p>
<p>4.2.3 Analysis of Resin Bases 122</p>
<p>4.2.4 White Paint 125</p>
<p>4.2.5 Coloured Household Paints 126</p>
<p>4.2.6 Multi–Layer Paints 130</p>
<p>4.2.7 Automotive Paint 132</p>
<p>4.2.8 Conclusions 135</p>
<p>References 135</p>
<p>4.3 Raman Spectroscopy for the Characterisation of Inks on Written Documents 137<br /> A. Guedes and A.C. Prieto</p>
<p>4.3.1 Introduction 137</p>
<p>4.3.2 Experimental 139</p>
<p>4.3.3 Chemical Differences in the Composition of Writing Inks through Time, and Modern Inks: Major Groups 141</p>
<p>4.3.4 Ink Discrimination 144</p>
<p>4.3.5 Forensic Test 146</p>
<p>4.3.6 Conclusions 149</p>
<p>References 149</p>
<p>4.4 Forensic Analysis of Fibres by Vibrational Spectroscopy 153<br /> Peter M. Fredericks</p>
<p>4.4.1 Introduction 153</p>
<p>4.4.1.1 Forensic importance of fibres 153</p>
<p>4.4.1.2 Types of fibres 153</p>
<p>4.4.1.3 Dyes 154</p>
<p>4.4.1.4 Why use vibrational spectroscopy? 154</p>
<p>4.4.2 Infrared Spectroscopy 154</p>
<p>4.4.2.1 Instrumentation and sample preparation 155</p>
<p>4.4.2.2 Transmission mid–IR microspectroscopy 157</p>
<p>4.4.2.3 ATR IR microspectroscopy 158</p>
<p>4.4.2.4 IR synchrotron radiation 160</p>
<p>4.4.2.5 Mid–IR imaging 160</p>
<p>4.4.3 Raman Spectroscopy 162</p>
<p>4.4.3.1 Application to fibres 162</p>
<p>4.4.3.2 Surface–enhanced Raman scattering 164</p>
<p>4.4.3.3 Raman spectroscopy of titania filler 165</p>
<p>4.4.4 Data Analysis 165</p>
<p>4.4.5 Conclusions 167</p>
<p>Acknowledgement 168</p>
<p>References 168</p>
<p>4.5 In Situ Crime Scene Analysis 171<br /> Edward G. Bartick</p>
<p>4.5.1 Introduction 171</p>
<p>4.5.2 Instrumentation 172</p>
<p>4.5.2.1 Raman spectrometers 173</p>
<p>4.5.2.2 Infrared spectrometers 175</p>
<p>4.5.3 Applications 177</p>
<p>4.5.3.1 Conditions of analysis 177</p>
<p>4.5.3.2 General chemical analysis 177</p>
<p>4.5.3.3 Explosives 177</p>
<p>4.5.3.4 Drugs 178</p>
<p>4.5.4 Conclusion 183</p>
<p>Acknowledgements 183</p>
<p>References 183</p>
<p>4.6 Raman spectroscopy gains currency 185<br /> R. Withnall, A. Reip and J. Silver</p>
<p>4.6.1 Introduction 185</p>
<p>4.6.2 Banknotes 186</p>
<p>4.6.3 Postage Stamps 194</p>
<p>4.6.4 Potential Forensic Applications 198</p>
<p>4.6.5 Conclusions 203</p>
<p>Acknowledgements 203</p>
<p>References 203</p>
<p>SECTION III: COUNTER TERRORISM AND HOMELAND SECURITY 205</p>
<p>5 Counter Terrorism and Homeland Security 207<br /> Vincent Otieno–Alego and Naomi Speers</p>
<p>5.1 Introduction 207</p>
<p>5.2 Infrared and Raman Spectroscopy for Explosives Identification 208</p>
<p>5.2.1 Level of chemical identification 209</p>
<p>5.2.2 Capability to analyse a large range of explosives and related chemicals 210</p>
<p>5.2.3 Other positive features of IR and Raman spectroscopy in explosive analysis 211</p>
<p>5.2.4 Case Studies Example 1 211</p>
<p>5.3 Portable IR and Raman Instruments 213</p>
<p>5.3.1 Case Studies Example 2 214</p>
<p>5.4 Post–Blast Examinations 217</p>
<p>5.5 Detection of Explosives in Fingerprints 217</p>
<p>5.6 Spatially Offset Raman Spectroscopy 218</p>
<p>5.6.1 Applications of SORS in explosive analysis 220</p>
<p>5.7 Terahertz Spectroscopy of Explosives 221</p>
<p>5.7.1 Sampling modes and sample preparation 222</p>
<p>5.7.2 THz spectroscopy of explosives and explosive related materials 223</p>
<p>5.8 Summary 226</p>
<p>Glossary 227</p>
<p>References 228</p>
<p>5.1 Tracing Bioagents a Vibrational Spectroscopic Approach for a Fast and Reliable Identification of Bioagents 233<br /> P. R osch, U. M unchberg, S. St ockel and J. Popp</p>
<p>5.1.1 Introduction 233</p>
<p>5.1.2 Toxins 236</p>
<p>5.1.3 Viruses 238</p>
<p>5.1.4 Bacteria 238</p>
<p>5.1.4.1 Bulk samples 238</p>
<p>5.1.4.2 Single bacterium identification 240</p>
<p>5.1.5 Conclusion 246</p>
<p>Acknowledgement 246</p>
<p>References 246</p>
<p>5.2 Raman Spectroscopic Studies of Explosives and Precursors: Applications and Instrumentation 251<br /> Mary L. Lewis, Ian R. Lewis and Peter R. Griffiths</p>
<p>5.2.1 Background 251</p>
<p>5.2.2 Introduction 252</p>
<p>5.2.3 UV Excited Raman Studies of Explosives 253</p>
<p>5.2.4 FT–Raman Studies of Explosives 255</p>
<p>5.2.5 Neither FT–Raman nor Traditional Dispersive Raman 258</p>
<p>5.2.6 Surface Enhanced Raman and Surface Enhanced Resonance Raman Studies of Explosives 258</p>
<p>5.2.7 Dispersive Raman Studies of Explosives 259</p>
<p>5.2.8 Compact Dispersive Raman Spectrometers for the Study of Explosives 260</p>
<p>5.2.9 Spatially Offset Raman Spectroscopy 265</p>
<p>5.2.10 Stand–Off Raman of Explosives 266</p>
<p>5.2.11 Raman Microscopy and Imaging 266</p>
<p>5.2.12 Vehicle–Mounted Raman Analysers 267</p>
<p>5.2.13 Classification Schema for Explosives 268</p>
<p>5.2.14 Summary 268</p>
<p>References 269</p>
<p>5.3 Handheld Raman and FT–IR Spectrometers 275<br /> Michael D. Hargreaves, Robert L. Green, Wayne Jalenak, Christopher D. Brown and Craig Gardner</p>
<p>5.3.1 Introduction 275</p>
<p>5.3.2 Handheld/Portable Raman and FT–IR Devices 276</p>
<p>5.3.3 Explosives 276</p>
<p>5.3.4 Tactical Considerations 277</p>
<p>5.3.5 Sample Considerations 279</p>
<p>5.3.6 Raman and FT–IR Spectroscopy Explosive Identification Capabilities 280</p>
<p>5.3.7 Performance Characterisation 285</p>
<p>5.3.8 Summary 285</p>
<p>Disclaimer 286</p>
<p>References 286</p>
<p>5.4 Non–Invasive Detection of Concealed Liquid and Powder Explosives using Spatially Offset Raman spectroscopy 289<br /> Kevin Buckley and Pavel Matousek</p>
<p>5.4.1 Introduction 289</p>
<p>5.4.2 Discussion and Examples 290</p>
<p>5.4.3 Summary 293</p>
<p>References 294</p>
<p>5.5 Terahertz Frequency Spectroscopy and its Potential for Security Applications 295<br /> A.D. Burnett, A.G. Davies, P. Dean, J.E. Cunningham and E.H. Linfield</p>
<p>5.5.1 Introduction 295</p>
<p>5.5.2 Terahertz Frequency Radiation 296</p>
<p>5.5.3 Terahertz Time–Domain Spectroscopy 296</p>
<p>5.5.4 Examples of the Use of THz Spectroscopy to Detect Materials of Security Interest 298</p>
<p>5.5.4.1 Explosives 298</p>
<p>5.5.4.2 Drugs of abuse 301</p>
<p>5.5.4.3 Terahertz frequency imaging 305</p>
<p>5.5.4.4 Spectroscopy and imaging of concealed materials 307</p>
<p>5.5.5 Conclusions and Future Outlook 309</p>
<p>Acknowledgements 309</p>
<p>References 310</p>
<p>SECTION IV: DRUGS AND DRUGS OF ABUSE 315</p>
<p>6 Raman Spectroscopy of Drugs of Abuse 317<br /> Steven E.J. Bell, Samantha P. Stewart and S.J. Speers</p>
<p>6.1 Introduction 317</p>
<p>6.2 Bulk Drugs 317</p>
<p>6.2.1 General introduction 317</p>
<p>6.2.2 Experimental considerations 319</p>
<p>6.2.3 Laboratory–based methods 322</p>
<p>6.2.3.1 Screening and Identification 322</p>
<p>6.2.3.2 Quantitative Analysis 323</p>
<p>6.2.3.3 Composition Profiling 325</p>
<p>6.2.4 Raman outside the laboratory 326</p>
<p>6.3 Trace Detection 328</p>
<p>6.3.1 Drug microparticles 328</p>
<p>6.3.2 Surface–enhanced Raman spectroscopy 329</p>
<p>6.4 Conclusions 335</p>
<p>References 336</p>
<p>6.1 Drugs of Abuse Application of Handheld FT–IR and Raman Spectrometers 339<br /> Michael D. Hargreaves</p>
<p>6.1.1 Introduction 339</p>
<p>6.1.2 Advantages of Vibrational Spectroscopy 339</p>
<p>6.1.3 General Drugs of Abuse Introduction 340</p>
<p>6.1.4 Vibrational Spectroscopy 340</p>
<p>6.1.5 Analysis of Street Samples 343</p>
<p>6.1.5.1 Considerations when analysing in situ 343</p>
<p>6.1.5.2 Considerations when analysing in the laboratory 343</p>
<p>6.1.6 New Narcotic Threats 344</p>
<p>6.1.7 Identification of Drug Precursors 344</p>
<p>6.1.8 Case Studies 346</p>
<p>6.1.8.1 Case study I 346</p>
<p>6.1.8.2 Case study II 347</p>
<p>6.1.9 Conclusion 347</p>
<p>Disclaimer 348</p>
<p>References 348</p>
<p>6.2 Non–Invasive Detection of Illicit Drugs Using Spatially Offset Raman Spectroscopy 351<br /> Kevin Buckley and Pavel Matousek</p>
<p>6.2.1 Introduction 351</p>
<p>6.2.2 Application Examples 352</p>
<p>6.2.3 Summary 356</p>
<p>References 356</p>
<p>6.3 Detection of Drugs of Abuse Using Surface Enhanced Raman Scattering 357<br /> Karen Faulds and W. Ewen Smith</p>
<p>6.3.1 Introduction 357</p>
<p>6.3.2 Substrates 358</p>
<p>6.3.3 Direct Detection 360</p>
<p>6.3.4 Indirect Detection 363</p>
<p>6.3.5 Conclusions 365</p>
<p>References 365</p>
<p>SECTION V: ART 367</p>
<p>7 Vibrational Spectroscopy as a Tool for Tracing Art Forgeries 369<br /> A. Deneckere, P. Vandenabeele and L. Moens</p>
<p>7.1 Introduction 369</p>
<p>7.2 How to Trace Art Forgeries with Vibrational Spectroscopy? 371</p>
<p>7.2.1 Detection of anachronisms 371</p>
<p>7.2.1.1 Examples 371</p>
<p>7.2.1.2 Differentiation Between the Natural or Synthetic Form of a Pigment 373</p>
<p>7.2.2 Comparing with the artist s palette 375</p>
<p>7.2.3 Impurities 377</p>
<p>7.2.3.1 The Mercatellis Manuscripts 377</p>
<p>7.2.3.2 Spectroscopic Pigment Investigation of the Mayer van den Bergh Breviary 378</p>
<p>7.3 Conclusion 380</p>
<p>Acknowledgements 380</p>
<p>References 380</p>
<p>7.1 Identification of Dyes and Pigments by Vibrational Spectroscopy 383<br /> Juan Manuel Madariaga</p>
<p>7.1.1 Introduction 383</p>
<p>7.1.2 Review of the Scientific Literature 384</p>
<p>7.1.3 Databases of Reference Materials 386</p>
<p>7.1.3.1 Chemometric analysis of the spectral information 389</p>
<p>7.1.4 FT–IR and Raman Spectroscopy Applications 390</p>
<p>7.1.4.1 Identification of dyes, pigments and bulk materials 390</p>
<p>7.1.4.2 Attribution, authentication and counterfeit detection 392</p>
<p>7.1.4.3 Identification of degradation products and degradation mechanisms 394</p>
<p>References 396</p>
<p>7.2 The Vinland Map: An Authentic Relic of Early Exploration or a Modern Forgery Raman Spectroscopy in a Pivotal Role? 401<br /> Howell G.M. Edwards</p>
<p>7.2.1 Introduction 401</p>
<p>7.2.2 The Scientific Analysis of the Vinland Map and Tartar Relation 403</p>
<p>7.2.3 Raman Microspectroscopic Study 403</p>
<p>References 407</p>
<p>7.3 Study of Manuscripts by Vibrational Spectroscopy 409<br /> Lucia Burgio</p>
<p>7.3.1 Introduction 409</p>
<p>7.3.2 Why Raman Microscopy? 410</p>
<p>7.3.3 Dating and Authentication 411</p>
<p>7.3.4 Provenance and Trade Routes 413</p>
<p>7.3.5 Infrared Spectroscopy 415</p>
<p>Acknowledgements 415</p>
<p>References 415</p>
<p>SECTION VI: ARCHAEOLOGY AND MINERALOGY 419</p>
<p>8 Infrared and Raman Spectroscopy: Forensic Applications in Mineralogy 421<br /> J. Jehlicka</p>
<p>8.1 Introduction 421</p>
<p>8.2 Applications of Raman Spectroscopy for Provenancing 423</p>
<p>8.3 Raman Spectroscopy of Minerals 423</p>
<p>8.3.1 Class 1: Elements 423</p>
<p>8.3.1.1 Carbon 423</p>
<p>8.3.1.2 Carbon and Graphitisation 425</p>
<p>8.3.2 Minerals from other groups of the mineralogical classification system 426</p>
<p>8.3.2.1 Class 2: Sulfides 426</p>
<p>8.3.2.2 Class 3: Halogenides 426</p>
<p>8.3.2.3 Class 4: Oxides and Hydroxides 426</p>
<p>8.3.2.4 Class 5: Carbonates and Nitrates 427</p>
<p>8.3.2.5 Class 6: Borates 427</p>
<p>8.3.2.6 Class 7: Sulfates 427</p>
<p>8.3.2.7 Class 8: Phosphates 427</p>
<p>8.3.2.8 Class 9: Silicates 427</p>
<p>8.3.2.9 Class 10: Organic Compounds 427</p>
<p>8.4 Opals 428</p>
<p>8.5 Natural Glass 428</p>
<p>8.6 Meteorites 429</p>
<p>8.7 Identification and Provenancing of Gemstones 430</p>
<p>8.7.1 Synthetic gemstones 431</p>
<p>8.7.2 Semi–precious minerals 431</p>
<p>8.7.3 Garnets 431</p>
<p>8.8 Common Minerals 433</p>
<p>8.8.1 Clays 433</p>
<p>8.9 Databases 434</p>
<p>8.10 Identification of Inclusions in Minerals 434</p>
<p>8.11 Raman Mapping Techniques 436</p>
<p>8.12 Analyses Outdoors and On Site 437</p>
<p>8.13 Applications of Raman Spectroscopy to the Provenancing of Rocks 438</p>
<p>8.14 Summary 438</p>
<p>Acknowledgements 439</p>
<p>References 439</p>
<p>8.1 Identification of Ivory by Conventional Backscatter Raman and SORS 447<br /> Michael D. Hargreaves and Howell G.M. Edwards</p>
<p>8.1.1 Introduction 447</p>
<p>8.1.2 Application of Raman Spectroscopy 449</p>
<p>8.1.2.1 Preliminary screening method 449</p>
<p>8.1.2.2 Fake sample analysis 451</p>
<p>8.1.2.3 Concealed materials screening 452</p>
<p>8.1.3 Conclusions 453</p>
<p>Disclaimer 453</p>
<p>References 454</p>
<p>8.2 Applications to the Study of Gems and Jewellery 455<br /> Lore Kiefert, Marina Epelboym, Hpone–Phyo Kan–Nyunt and Susan Paralusz</p>
<p>8.2.1 Introduction 455</p>
<p>8.2.2 Case Study Example I: Mid–Infrared and Raman Spectroscopy of Diamonds 456</p>
<p>8.2.2.1 Introduction 456</p>
<p>8.2.2.2 Background 456</p>
<p>8.2.2.3 Infrared spectroscopy of diamonds 457</p>
<p>8.2.2.4 Photoluminescence spectroscopy 457</p>
<p>8.2.2.5 Conclusions 458</p>
<p>8.2.3 Case Study Example II: Detection of Fissure Fillings in Emeralds 458</p>
<p>8.2.3.1 Introduction 458</p>
<p>8.2.3.2 Detection of emerald fissure fillings using FT–IR spectroscopy 461</p>
<p>8.2.3.3 Detection of emerald fissure fillings using Raman spectroscopy 463</p>
<p>8.2.3.4 Conclusions 464</p>
<p>8.2.4 Case Study Example III: The Raman Identification of Turquoise 464</p>
<p>8.2.4.1 Introduction 464</p>
<p>8.2.4.2 Advanced analysis of turquoise 464</p>
<p>8.2.5 Summary 466</p>
<p>Acknowledgements 467</p>
<p>References 467</p>
<p>8.3 Raman Spectroscopy of Ceramics and Glasses 469<br /> Paola Ricciardi and Philippe Colomban</p>
<p>8.3.1 Introduction 469</p>
<p>8.3.1.1 The Raman spectroscopic signature of ceramics, glasses and enamels 470</p>
<p>8.3.2 How to Discriminate Between Genuine Artifacts and Copies and Fakes 470</p>
<p>8.3.3 On–Site Measurements and Procedures 472</p>
<p>8.3.3.1 Tools for the identification of crystalline and amorphous phases in ceramics and glasses 474</p>
<p>8.3.4 Case Studies 474</p>
<p>8.3.4.1 Alhambra vases (Granada, Spain, fourteenth century) 476</p>
<p>8.3.4.2 Iznik fritware (Ottoman empire, fifteenth seventeenth century) 476</p>
<p>8.3.4.3 Celadons (Vi^et Nam, thirteenth fifteenth century) 476</p>
<p>8.3.4.4 Medici porcelain (Florence, sixteenth century) 476</p>
<p>8.3.4.5 Glass cup with handles (Low Countries, sixteenth seventeenth century) 477</p>
<p>8.3.4.6 Meissen porcelains (Saxony, eighteenth century) 477</p>
<p>8.3.4.7 Enamels on metal: Chinese cloisonnes and Limoges painted enamels (fifteenth nineteenth century) 478</p>
<p>8.3.5 Conclusions 478</p>
<p>References 478</p>
<p>8.4 Raman Spectroscopy at Longer Excitation Wavelengths Applied to the Forensic Analysis of Archaeological Specimens: A Novel Aspect of Forensic Geoscience 481<br /> Howell G.M. Edwards</p>
<p>8.4.1 Introduction 481</p>
<p>8.4.2 Experimental 486</p>
<p>8.4.3 Results and Discussion 486</p>
<p>8.4.3.1 Resins 486</p>
<p>8.4.3.2 Ivories 492</p>
<p>8.4.3.3 Buried skeletal remains 495</p>
<p>8.4.4 Human Tissues and Skeletal Remains 495</p>
<p>8.4.4.1 Nail 500</p>
<p>8.4.4.2 Skin 501</p>
<p>8.4.4.3 Calcified tissues 507</p>
<p>8.4.4.4 Teeth 507</p>
<p>8.4.4.5 Bone 508</p>
<p>8.4.5 Conclusions 509</p>
<p>Acknowledgements 509</p>
<p>References 510</p>
<p>SECTION VII: COUNTERFEIT CONSUMER PRODUCTS 513</p>
<p>9 Counterfeit Consumer Products 515<br /> Andrew J. O Neil</p>
<p>9.1 Background 515</p>
<p>9.2 Anti–Counterfeiting Organisations 515</p>
<p>9.3 Definition of a Counterfeit Product 516</p>
<p>9.4 Counterfeit Product Spectroscopic Analysis 516</p>
<p>9.4.1 Counterfeit alcoholic beverages and whisky 517</p>
<p>9.4.2 Counterfeit stamps 518</p>
<p>9.4.3 Counterfeit currency 519</p>
<p>9.4.4 Counterfeit medicines 520</p>
<p>9.4.4.1 Near–Infrared Spectroscopy and Imaging Microscopy 522</p>
<p>9.4.4.2 Attenuated Total Reflection Mid–Infrared Spectroscopy and Imaging Microscopy 526</p>
<p>9.4.4.3 Raman Spectroscopy, Spatially Offset Raman Spectroscopy and Mapping Microscopy 527</p>
<p>9.4.4.4 Use of Portable Spectrometers for Medicines Authentication 528</p>
<p>9.4.4.5 Combined Uses of Molecular Spectroscopic Techniques for Medicines Authentication 529</p>
<p>9.5 Case Studies Using Mid–infrared, Raman and Near–infrared Spectroscopies and NIR Multispectral Imaging 529</p>
<p>9.6 Case Study I: Counterfeit Clothing 532</p>
<p>9.6.1 Case study Ia: counterfeit Burberry Classic Check Scarf 532</p>
<p>9.6.1.1 Near–Infrared Spectroscopic Analysis 532</p>
<p>9.6.1.2 ATR/FT–IR Analysis 532</p>
<p>9.6.2 Case study Ib: counterfeit New Era 59fifty baseball caps 532</p>
<p>9.6.2.1 Near–Infrared Spectroscopic Analysis 533</p>
<p>9.6.2.2 ATR/FT–IR Analysis 535</p>
<p>9.7 Case Study II: Counterfeit Aftershave 536</p>
<p>9.8 Case Study III: Counterfeit Medicines 540</p>
<p>9.8.1 Near–infrared spectrometry 542</p>
<p>9.8.2 Raman spectrometry 545</p>
<p>9.8.3 NIR Multispectral Imaging 547</p>
<p>9.9 Case Study IV: Counterfeit Product Packaging 549</p>
<p>9.9.1 ATR/FT–IR Spectroscopy 549</p>
<p>9.9.1.1 Tablet Blister–Strip Polymer 549</p>
<p>9.9.1.2 Tablet Carton 550</p>
<p>9.10 Case Study V: Counterfeit Royal Mail First Class Stamps 551</p>
<p>9.10.1 Near–infrared spectroscopic analysis 551</p>
<p>9.10.2 Near–infrared multispectral imaging 551</p>
<p>9.11 Case Study VI: Counterfeit Bank of England Banknotes 552</p>
<p>9.11.1 ATR/FT–IR Spectroscopic Analysis 552</p>
<p>9.11.2 NIR Multispectral Imaging 555</p>
<p>9.12 Conclusion 555</p>
<p>References 557</p>
<p>9.1 Raman Spectroscopy for the Analysis of Counterfeit Tablets 561<br /> Kaho Kwok and Lynne S. Taylor</p>
<p>9.1.1 The Pharmaceutical Counterfeiting Problem 561</p>
<p>9.1.2 Analytical Techniques to Detect Counterfeit Products 562</p>
<p>9.1.3 Using Raman Spectroscopy to Characterise Genuine and Counterfeit Tablets A Case Study 563</p>
<p>9.1.4 Conclusions 571</p>
<p>Acknowledgements 571</p>
<p>References 571</p>
<p>9.2 Examination of Counterfeit Pharmaceutical Labels 573<br /> Mark R. Witkowski and Mary W. Carrabba</p>
<p>9.2.1 Introduction 573</p>
<p>9.2.2 Counterfeit Packaging Analysis 574</p>
<p>9.2.3 Case Study I: Counterfeit LipitorLabels 574</p>
<p>9.2.4 Case Study II: Counterfeit ZyprexaLabels 578</p>
<p>9.2.5 Conclusion 581</p>
<p>Disclaimer 582</p>
<p>Acknowledgements 582</p>
<p>References 582</p>
<p>9.3 Vibrational Spectroscopy for Food Forensics 583<br /> Victoria L. Brewster and Royston Goodacre</p>
<p>9.3.1 Introduction 583</p>
<p>9.3.2 Adulteration 584</p>
<p>9.3.3 Provenance 587</p>
<p>9.3.4 Food Spoilage 587</p>
<p>9.3.5 Micro–Organism Identification 588</p>
<p>9.3.6 Conclusion 589</p>
<p>Acknowledgements 589</p>
<p>References 589</p>
<p>9.4 Infrared Spectroscopy for the Detection of Adulteration in Foods 593<br /> Banu Özen and Figen Tokatli</p>
<p>9.4.1 Introduction 593</p>
<p>9.4.2 Adulteration of Food Products and Application of IR Spectroscopy in the Detection of Adulteration 594</p>
<p>9.4.3 Case Study: Adulteration of Extra Virgin Olive Oils with Refined Hazelnut Oil 596</p>
<p>9.4.4 Summary 599</p>
<p>References 599</p>
<p>Index 603</p>

