Fusion Protein Technologies for Biopharmaceuticals – Applications and Challenges
Applications and Challenges
Samenvatting
This book presents the state–of–the–art for development of fusion proteins, demonstrates current concepts, describes multiple applications, and discusses typical challenges linked to these molecules. It overviews the multitude of possibilities to design novel protein drugs while balancing between proven concepts and new ideas that have not reached the clinic yet. The book is structured into three larger parts. First general issues and concepts are discussed before in the second part examples on the three categories (time, toxicity, and targeting) are presented. Finally, novel concepts and the rising class of multispecifc antibodies are described. Together, the chapters combine the success stories of marketed drugs with the dynamic preclinical and clinical research into novel drugs addressing unmet medical needs.
Specificaties
Inhoudsopgave
<p>CONTRIBUTORS xxv</p>
<p>PART I INTRODUCTION 1</p>
<p>1 Fusion Proteins: Applications and Challenges 3<br /> Stefan R. Schmidt</p>
<p>1.1 History, 3</p>
<p>1.2 Definitions and Categories, 4</p>
<p>1.3 Patenting, 5</p>
<p>1.4 Design and Engineering, 6</p>
<p>1.5 Manufacturing, 10</p>
<p>1.6 Regulatory Challenges, 15</p>
<p>1.7 Competition and Market, 16</p>
<p>1.8 Conclusion and Future Perspective, 17</p>
<p>References, 18</p>
<p>2 Analyzing and Forecasting the Fusion Protein Market and Pipeline 25<br /> Mark Belsey and Giles Somers</p>
<p>2.1 Introduction, 25</p>
<p>2.2 Market Sales Dynamics of the FP Market, 25</p>
<p>2.3 Individual Drug Sales Analysis, 27</p>
<p>2.4 Pipeline Database Analysis, 32</p>
<p>Disclaimer, 36</p>
<p>Acknowledgment, 36</p>
<p>References, 36</p>
<p>3 Structural Aspects of Fusion Proteins Determining the Level of Commercial Success 39<br /> Giles Somers</p>
<p>3.1 Classification of FPs, 39</p>
<p>3.2 Factors for Commercial Success, 49</p>
<p>References, 54</p>
<p>4 Fusion Protein Linkers: Effects on Production, Bioactivity, and Pharmacokinetics 57<br /> Xiaoying Chen, Jennica Zaro, and Wei–Chiang Shen</p>
<p>4.1 Introduction, 57</p>
<p>4.2 Overview of General Properties of Linkers Derived From Naturally Occurring Multidomain Proteins, 58</p>
<p>4.3 Empirical Linkers in Recombinant Fusion Proteins, 59</p>
<p>4.4 Functionality of Linkers in Fusion Proteins, 66</p>
<p>4.5 Conclusions and Future Perspective, 70</p>
<p>References, 71</p>
<p>5 Immunogenicity of Therapeutic Fusion Proteins: Contributory Factors and Clinical Experience 75<br /> Vibha Jawa, Leslie Cousens, and Anne S. De Groot</p>
<p>5.1 Introduction, 75</p>
<p>5.2 Basis of Therapeutic Protein Immunogenicity, 75</p>
<p>5.3 Tools for Immunogenicity Screening, 77</p>
<p>5.4 Approaches for Risk Assessment and Minimization, 81</p>
<p>5.5 Case Study and Clinical Experience, 83</p>
<p>5.6 Preclinical and Clinical Immunogenicity Assessment Strategy, 85</p>
<p>5.7 Conclusions, 87</p>
<p>Acknowledgment, 87</p>
<p>References, 87</p>
<p>PART II THE TRIPLE T PARADIGM: TIME, TOXIN, TARGETING 91</p>
<p>IIA TIME: FUSION PROTEIN STRATEGIES FOR HALF–LIFE EXTENSION 93</p>
<p>6 Fusion Proteins for Half–Life Extension 93<br /> Stefan R. Schmidt</p>
<p>6.1 Introduction, 93</p>
<p>6.2 Half–Life Extension Through Size and Recycling, 94</p>
<p>6.3 Half–Life Extension Through Increase of Hydrodynamic Radius, 100</p>
<p>6.4 Aggregate Forming Peptide Fusions, 102</p>
<p>6.5 Other Concepts, 103</p>
<p>6.6 Conclusions and Future Perspective, 103</p>
<p>References, 104</p>
<p>7 Monomeric Fc–Fusion Proteins 107<br /> Baisong Mei, Susan C. Low, Snejana Krassova, Robert T. Peters, Glenn F. Pierce, and Jennifer A. Dumont</p>
<p>7.1 Introduction, 107</p>
<p>7.2 FcRn and Monomeric Fc–Fusion Proteins, 108</p>
<p>7.3 Typical Applications, 109</p>
<p>7.4 Alternative Applications, 114</p>
<p>7.5 Expression and Purification of Monomeric Fc–Fusion Proteins, 116</p>
<p>7.6 Conclusions and Future Perspectives, 118</p>
<p>References, 118</p>
<p>8 Peptide–Fc Fusion Therapeutics: Applications and Challenges 123<br /> Chichi Huang and Ronald V. Swanson</p>
<p>8.1 Introduction, 123</p>
<p>8.2 Peptide Drugs, 124</p>
<p>8.3 Technologies Used for Reducing In Vivo Clearance of Therapeutic Peptides, 126</p>
<p>8.4 Fc–Fusion Proteins in Drug Development, 127</p>
<p>8.5 Peptide–Fc–Fusion Therapeutics, 131</p>
<p>8.6 Considerations and Challenges for Engineering Peptide–Fc–Fusion Therapeutics, 133</p>
<p>8.7 Conclusions, 138</p>
<p>Acknowledgment, 138</p>
<p>References, 138</p>
<p>9 Receptor–Fc and Ligand Traps as High–Affinity Biological Blockers: Development and Clinical Applications 143<br /> Aris N. Economides and Neil Stahl</p>
<p>9.1 Introduction, 143</p>
<p>9.2 Etanercept as a Prototypical Receptor–Fc–Based Cytokine Blocker, 144</p>
<p>9.3 Heteromeric Traps for Ligands Utilizing Multicomponent Receptor Systems with Shared Subunits, 144</p>
<p>9.4 Development and Clinical Application of an Interleukin 1 Trap: Rilonacept, 151</p>
<p>9.5 Development and Clinical Application of a VEGF Trap, 151</p>
<p>9.6 To Trap Or Not To Trap? Advantages and Disadvantages of Receptor–Fc Fusions and Traps Versus Antibodies, 152</p>
<p>9.7 Conclusion, 155</p>
<p>Acknowledgment, 155</p>
<p>References, 155</p>
<p>10 Recombinant Albumin Fusion Proteins 163<br /> Thomas Weimer, Hubert J. Metzner, and Stefan Schulte</p>
<p>10.1 Concept, 163</p>
<p>10.2 Technological Aspects, 164</p>
<p>10.3 Typical Applications and Indications, 164</p>
<p>10.4 Successes and Failures in Preclinical and Clinical Research, 172</p>
<p>10.5 Challenges, 173</p>
<p>10.6 Future Perspectives, 174</p>
<p>10.7 Conclusion, 174</p>
<p>Acknowledgment, 174</p>
<p>References, 174</p>
<p>11 Albumin–Binding Fusion Proteins in the Development of Novel Long–Acting Therapeutics 179<br /> Adam Walker, Grainne Dunlevy, and Peter Topley</p>
<p>11.1 Introduction, 179</p>
<p>11.2 Clinically Validated Half–Life Extension Technologies An Overview, 180</p>
<p>11.3 Interferon–a Fused to Human Serum Albumin or AlbudAb A Direct Comparison of HSA and AlbudAb Fusion Technologies, 182</p>
<p>11.4 Nanobodies in the Development of Alternative Half–Life Extension Technologies Based on Single Immunoglobulin Variable Domains, 186</p>
<p>11.5 Novel Half–Life Extension Technologies Alternative Approaches to Single Immunoglobulin Variable Domains, 187</p>
<p>11.6 Conclusions, 188</p>
<p>References, 189</p>
<p>12 Transferrin Fusion Protein Therapies: Acetylcholine Receptor–Transferrin Fusion Protein as a Model 191<br /> Dennis Keefe, Michael Heartlein, and Serene Josiah</p>
<p>12.1 Disease Overview, 191</p>
<p>12.2 Fusion Protein SHG2210 Design, 192</p>
<p>12.3 Characterization of SHG2210, 193</p>
<p>12.4 Applications and Indications, 196</p>
<p>12.5 Future Perspectives, 197</p>
<p>12.6 Conclusion, 198</p>
<p>References, 198</p>
<p>13 Half–Life Extension Through O–Glycosylation 201<br /> Fuad Fares</p>
<p>13.1 Introduction, 201</p>
<p>13.2 The Role of O–Linked Oligosaccharide Chains in Glycoprotein Function, 202</p>
<p>13.3 Designing Long–Acting Agonists of Glycoprotein Hormones, 203</p>
<p>13.4 Conclusions, 207</p>
<p>References, 207</p>
<p>14 ELP–Fusion Technology for Biopharmaceuticals 211<br /> Doreen M. Floss, Udo Conrad, Stefan Rose–John, and J urgen Scheller</p>
<p>14.1 Introduction, 211</p>
<p>14.2 ELP–based Protein Purification, 212</p>
<p>14.3 ELPylated Proteins in Medicine and Nanobiotechnology, 215</p>
<p>14.4 Molecular Pharming: a New Application for ELPylation, 217</p>
<p>14.5 Challenges and Future Perspectives, 221</p>
<p>14.6 Conclusion, 222</p>
<p>References, 222</p>
<p>15 Ligand–Receptor Fusion Dimers 227<br /> Sarbendra L. Pradhananga, Ian R. Wilkinson, Eric Ferrandis, Peter J. Artymiuk, Jon R. Sayers, and Richard J. Ross</p>
<p>15.1 Introduction, 227</p>
<p>15.2 The GHLR–Fusions, 228</p>
<p>15.3 Expression and Purification, 229</p>
<p>15.4 Analysis of the LR–Fusions, 229</p>
<p>15.5 LR–Fusions: The Next Generation in Hormone Treatment, 234</p>
<p>15.6 Conclusion, 234</p>
<p>References, 234</p>
<p>16 Development of Latent Cytokine Fusion Proteins 237<br /> Lisa Mullen, Gill Adams, Rewas Fatah, David Gould, Anne Rigby, Michelle Sclanders, Apostolos Koutsokeras, Gayatri Mittal, Sandrine Vessillier, and Yuti Chernajovsky</p>
<p>16.1 Introduction, 237</p>
<p>16.2 Description of Concept, 238</p>
<p>16.3 Limitations of the Latent Cytokine Technology, 240</p>
<p>16.4 Generation of Latent Cytokines, 242</p>
<p>16.5 Applications and Potential Clinical Indications, 244</p>
<p>16.6 Alternatives/Variants of Approach, 246</p>
<p>16.7 Challenges (Production and Development), 247</p>
<p>16.8 Conclusions and Future Perspectives, 248</p>
<p>Acknowledgments, 249</p>
<p>References, 249</p>
<p>IIB TOXIN: CYTOTOXIC FUSION PROTEINS 253</p>
<p>17 Fusion Proteins with Toxic Activity 253<br /> Stefan R. Schmidt</p>
<p>17.1 Introduction, 253</p>
<p>17.2 Toxins, 254</p>
<p>17.3 Immunocytokines, 258</p>
<p>17.4 Human Enzymes, 259</p>
<p>17.5 Apoptosis Induction, 261</p>
<p>17.6 Fc–Based Toxicity, 263</p>
<p>17.7 Peptide–Based Toxicity, 264</p>
<p>17.8 Conclusions and Future Perspectives, 265</p>
<p>References, 265</p>
<p>18 Classic Immunotoxins with Plant or Microbial Toxins 271<br /> Jung Hee Woo and Arthur Frankel</p>
<p>18.1 Introduction, 271</p>
<p>18.2 Toxins Used in Immunotoxin Preparation, 272</p>
<p>18.3 Immunotoxin Design and Synthesis, 274</p>
<p>18.4 Clinical Update of Immunotoxin Trials, 278</p>
<p>18.5 Challenges and Perspective of Classic Immunotoxins, 284</p>
<p>18.6 Conclusions, 286</p>
<p>References, 286</p>
<p>19 Targeted and Untargeted Fusion Proteins: Current Approaches to Cancer Immunotherapy 295<br /> Leslie A. Khawli, Peisheng Hu, and Alan L. Epstein</p>
<p>19.1 Introduction, 295</p>
<p>19.2 Immunotherapeutic Strategy for Cancer: Fusion Proteins, 296</p>
<p>19.3 Immunotherapeutic Applications of Antibody–Targeted and Untargeted Fc Fusion Proteins, 297</p>
<p>19.4 Combination Fusion Proteins Therapy, 305</p>
<p>19.5 Mechanism of Action: Immunoregulatory T–Cell (Treg) Depletion and Fusion Protein Combination Therapy, 306</p>
<p>19.6 Future Directions, 309</p>
<p>19.7 Conclusion, 309</p>
<p>Acknowledgments, 310</p>
<p>References, 310</p>
<p>20 Development of Experimental Targeted Toxin Therapies for Malignant Glioma 315<br /> Nikolai G. Rainov and Volkmar Heidecke</p>
<p>20.1 Introduction, 315</p>
<p>20.2 Targeted Toxins General Considerations, 316</p>
<p>20.3 Delivery Mode and Pharmacokinetics of Targeted Toxins in the Brain, 316</p>
<p>20.4 Preclinical and Clinical Studies with Targeted Toxins, 318</p>
<p>20.5 Conclusions and Future Developments of Targeted Toxins, 324</p>
<p>Disclosure, 325</p>
<p>References, 325</p>
<p>21 Immunokinases 329<br /> Stefan Barth, Stefan Gattenl ohner, and Mehmet Kemal Tur</p>
<p>21.1 Introduction, 329</p>
<p>21.2 Protein Kinases, Apoptosis, and Cancer, 330</p>
<p>21.3 Therapeutic Strategies to Restore Missing Kinase Expression, 331</p>
<p>21.4 Analysis of Immunokinase Efficacy, 333</p>
<p>21.5 Outlook, 334</p>
<p>References, 334</p>
<p>22 ImmunoRNase Fusions 337<br /> Wojciech Ardelt</p>
<p>22.1 Introduction, 337</p>
<p>22.2 Development of ImmunoRNase Fusion Proteins as Biopharmaceuticals, 339</p>
<p>22.3 Aspects of ImmunoRNase Design and Production, 344</p>
<p>22.4 Alternatives, 346</p>
<p>22.5 Conclusions and Future Perspectives, 347</p>
<p>References, 347</p>
<p>23 Antibody–Directed Enzyme Prodrug Therapy (ADEPT) 355<br /> Surinder K. Sharma</p>
<p>23.1 Introduction, 355</p>
<p>23.2 The Components, 355</p>
<p>23.3 ADEPT Systems with Carboxypeptidase G2 (CPG2), 357</p>
<p>23.4 Fusion Proteins, 359</p>
<p>23.5 Immunogenicity, 360</p>
<p>23.6 Conclusions and Future Outlook, 361</p>
<p>Acknowledgments, 361</p>
<p>References, 361</p>
<p>24 Tumor–Targeted Superantigens 365<br /> Gunnar Hedlund, G oran Forsberg, Thore Nederman, Anette Sundstedt, Leif Dahlberg, Mikael Tiensuu, and Mats Nilsson</p>
<p>24.1 Introduction: Tumor–Targeted Superantigens AUnique Concept of Cancer Treatment, 365</p>
<p>24.2 Structure and Production of Tumor–Targeted Superantigens, 366</p>
<p>24.3 Tumor–Targeted Superantigens are Powerful Targeted Immune Activators and Useful for all Types of Malignancies, 367</p>
<p>24.4 Increasing the Therapeutic Window and Exposure by the Creation of a Novel TTS Fusion Protein with Minimal MHC Class II Affinity; Naptumomab Estafenatox, 370</p>
<p>24.5 Clinical Experience with TTS Therapeutic Fusion Proteins, 371</p>
<p>24.6 Combining TTS with Cytostatic and Immunomodulating Anticancer Drugs, 377</p>
<p>24.7 Conclusions, 379</p>
<p>References, 379</p>
<p>IIC TARGETING: FUSION PROTEINS ADDRESSING SPECIFIC CELLS, ORGANS, AND TISSUES 383</p>
<p>25 Fusion Proteins with a Targeting Function 383<br /> Stefan R. Schmidt</p>
<p>25.1 Introduction, 383</p>
<p>25.2 Targeting Organs, 383</p>
<p>25.3 Intracellular Delivery, 388</p>
<p>25.4 Oral Delivery, 391</p>
<p>25.5 Conclusions and Future Perspectives, 392</p>
<p>References, 393</p>
<p>26 Cell–Penetrating Peptide Fusion Proteins 397<br /> Andres Mu∼noz–Alarcon, Henrik Helmfors, Kristin Karlsson, and U lo Langel</p>
<p>26.1 Introduction, 397</p>
<p>26.2 Typical Applications and Indications, 397</p>
<p>26.3 Technological Aspects, 399</p>
<p>26.4 Successes and Failures in Preclinical and Clinical Research, 402</p>
<p>26.5 Alternatives/Variants of This Approach, 405</p>
<p>26.6 Conclusions and Future Perspectives, 405</p>
<p>Acknowledgments, 406</p>
<p>References, 406</p>
<p>27 Cell–Specific Targeting of Fusion Proteins through Heparin Binding 413<br /> Jiajing Wang, Zhenzhong Ma, and Jeffrey A. Loeb</p>
<p>27.1 Why Target Heparan–Sulfate Proteoglycans with Fusion Proteins?, 413</p>
<p>27.2 Heparan Sulfate Structure and Biosynthesis Create Diversity and a Template for Targeting Specificity, 415</p>
<p>27.3 Tissue–Specific Expression of HSPGs and the Enzymes That Modify Them, 416</p>
<p>27.4 Heparin–Binding Proteins and Growth Factors, 416</p>
<p>27.5 Viruses Target Cells Through Heparin Binding, 417</p>
<p>27.6 Dissecting Heparin–Binding Protein Domains for Tissue–Specific Targeting, 418</p>
<p>27.7 Fusion Proteins Incorporating HBDs, 418</p>
<p>27.8 The Neuregulin 1 Growth Factor Has a Unique and Highly Specific HBD, 419</p>
<p>27.9 Using Neuregulin s HBD to Generate a Targeted Neuregulin Antagonist, 419</p>
<p>27.10 Tissue Targeting and Therapeutic Efficacy of a Heparin–Targeted NRG1 Antagonist Fusion Protein, 420</p>
<p>27.11 Conclusions and Future Perspectives, 423</p>
<p>References, 424</p>
<p>28 Bone–Targeted Alkaline Phosphatase 429<br /> Jose Luis Millan</p>
<p>28.1 Detailed Description of the Concept, 429</p>
<p>28.2 Technical Aspects, 430</p>
<p>28.3 Applications and Indications, 432</p>
<p>28.4 Preclinical and Clinical Research, 433</p>
<p>28.5 Alternatives/Variants of This Approach, 434</p>
<p>28.6 Challenges in Production and Development, 436</p>
<p>28.7 Conclusions and Future Perspectives, 436</p>
<p>Acknowledgments, 437</p>
<p>References, 437</p>
<p>29 Targeting Interferon–a to the Liver: Apolipoprotein A–I as a Scaffold for Protein Delivery 441<br /> Jessica Fioravanti, Jesus Prieto, and Pedro Berraondo</p>
<p>29.1 Detailed Description of the Concept, 441</p>
<p>29.2 Technological Aspects, 447</p>
<p>29.3 Typical Applications and Indications, 447</p>
<p>29.4 Alternatives and Variants of This Approach, 448</p>
<p>29.5 Conclusions and Future Perspectives, 448</p>
<p>References, 448</p>
<p>PART III BEYOND THE TRIPLE T–PARADIGM 453</p>
<p>IIIA NOVEL CONCEPTS, NOVEL SCAFFOLDS 455</p>
<p>30 Signal Converter Proteins 455<br /> Mark L. Tykocinski</p>
<p>30.1 Introduction, 455</p>
<p>30.2 Historical Roots of Signal Conversion: Artificial Veto Cell Engineering and Protein Painting, 455</p>
<p>30.3 Trans Signal Converter Proteins, 458</p>
<p>30.4 Expanding Trans Signal Conversion Options: Redirecting Signals, 459</p>
<p>30.5 From Trans to Cis Signal Conversion: Driving Auto–Signaling, 460</p>
<p>30.6 Mechanistic Dividends of Chimerization, 461</p>
<p>30.7 Targeting Multiple Diseases with Individual Signal Converters, 462</p>
<p>30.8 Structural Constraints in SCP Design, 463</p>
<p>30.9 Coding SCP Functional Repertoires, 463</p>
<p>30.10 Expanding the Catalog of Inhibitory SCP, 464</p>
<p>30.11 Immune Activating SCP, 466</p>
<p>30.12 Experimental Tools for Screening SCP Candidates, 467</p>
<p>30.13 SCP Frontiers: Mining the Surface Protein Interactome, Rewiring Cellular Networks, 467</p>
<p>References, 468</p>
<p>31 Soluble T–Cell Antigen Receptors 475<br /> Peter R. Rhode</p>
<p>31.1 Soluble T–cell Antigen Receptor (STAR) Fusion Technology and Utilities, 475</p>
<p>31.2 Expression and Purification of Recombinant Star Fusion Proteins, 477</p>
<p>31.3 Clinical and Research Product Applications, 478</p>
<p>31.4 Preclinical Testing Using Star Fusion Proteins, 481</p>
<p>31.5 Clinical Development of ALT–801, 487</p>
<p>31.6 Alternatives/Variants of This Approach, 488</p>
<p>31.7 Challenges, 489</p>
<p>31.8 Conclusions and Future Perspectives, 490</p>
<p>Acknowledgments, 490</p>
<p>References, 490</p>
<p>32 High–Affinity Monoclonal T–Cell Receptor (mTCR) Fusions 495<br /> Nikolai M. Lissin, Namir J. Hassan, and Bent K. Jakobsen</p>
<p>32.1 Introduction: The T Cell Receptor (TCR) as a Targeting Molecule, 495</p>
<p>32.2 Engineered High–Affinity Monoclonal TCRs (mTCR), 497</p>
<p>32.3 mTCR–Based Fusion Proteins for Therapeutic Applications, 500</p>
<p>32.4 Immune–Mobilizing Monoclonal TCRs Against Cancer (ImmTAC), 500</p>
<p>32.5 Conclusions and Future Perspectives, 503</p>
<p>Acknowledgments, 504</p>
<p>References, 504</p>
<p>33 Amediplase 507<br /> Stefano Evangelista and Stefano Manzini</p>
<p>33.1 Introduction, 507</p>
<p>33.2 Source, Physico–Chemical Properties and Formulation, 508</p>
<p>33.3 Preclinical Studies, 510</p>
<p>33.4 Human Studies, 512</p>
<p>33.5 Historical Comparison with Other Thrombolytics, 517</p>
<p>33.6 Conclusions and Future Perspectives, 517</p>
<p>Acknowledgment, 517</p>
<p>References, 517</p>
<p>34 Breaking New Therapeutic Grounds: Fusion Proteins of Darpins and Other Nonantibody Binding Proteins 519<br /> Hans Kaspar Binz</p>
<p>34.1 Introduction, 519</p>
<p>34.2 Novel Scaffolds Alternatives to Antibodies, 519</p>
<p>34.3 New Therapeutic Concepts with Nonantibody Binding Proteins, 523</p>
<p>34.4 Scaffold–Fusion Proteins Beyond Antibody Possibilities, 525</p>
<p>Acknowledgments, 526</p>
<p>References, 526</p>
<p>IIIB MULTIFUNCTIONAL ANTIBODIES 529</p>
<p>35 Resurgence of Bispecific Antibodies 529<br /> Patrick A. Baeuerle and Tobias Raum</p>
<p>35.1 A Brief History of Bispecific Antibodies, 529</p>
<p>35.2 Asymmetric IgG–Like Bispecific Antibodies, 530</p>
<p>35.3 Symmetric IgG–Like Bispecific Antibodies, 531</p>
<p>35.4 IgG–Like Bispecific Antibodies with Fused Antibody Fragments, 533</p>
<p>35.5 Bispecific Constructs Based on the Fcg Fragment, 534</p>
<p>35.6 Bispecific Constructs Based on Fab Fragments, 535</p>
<p>35.7 Bispecific Constructs Based on Diabodies or Single–Chain Antibodies, 536</p>
<p>35.8 Bifunctional Fusions of Antibodies or Fragments with Other Proteins, 538</p>
<p>35.9 Bispecific Antibodies for Various Functions: How to Select the Right Format?, 539</p>
<p>References, 541</p>
<p>36 Novel Applications of Bispecific DART1 Proteins 545<br /> Syd Johnson, Bhaswati Barat, Hua W. Li, Ralph F. Alderson, Paul A. Moore, and Ezio Bonvini</p>
<p>36.1 Introduction, 545</p>
<p>36.2 DART1 Proteins, 546</p>
<p>36.3 Application of DART1 to Cross–Link Inhibitory and Activating Receptors, 546</p>
<p>36.4 Application of Bispecific Antibodies in Oncology, 547</p>
<p>36.5 U–DART Concept for Screening DART1 Candidate Targets and mAbs, 549</p>
<p>36.6 U–DART Concept for Applications in Autoimmune and Inflammatory Disease, 549</p>
<p>36.7 Conclusions and Future Perspectives, 554</p>
<p>References, 554</p>
<p>37 Strand Exchange Engineered Domain (Seed): A Novel Platform Designed to Generate Mono and Multispecific Protein Therapeutics 557<br /> Alec W. Gross, Jessica P. Dawson, Marco Muda, Christie Kelton, Sean D. McKenna, and Bjo¨rn Hock</p>
<p>37.1 Introduction, 557</p>
<p>37.2 Technical Aspects, 558</p>
<p>37.3 Potential Therapeutic Applications, 562</p>
<p>37.4 Future Perspectives, 566</p>
<p>37.5 Conclusions, 567</p>
<p>Acknowledgments, 567</p>
<p>References, 567</p>
<p>38 CovX–Bodies 571<br /> Abhijit Bhat, Olivier Laurent, and Rodney Lappe</p>
<p>38.1 The CovX–Body Concept, 571</p>
<p>38.2 Technological Aspects, 571</p>
<p>38.3 Applications of the CovX–Body Technology, 578</p>
<p>References, 581</p>
<p>39 Modular Antibody Engineering: Antigen Binding Immunoglobulin Fc CH3 Domains as Building Blocks for Bispecific Antibodies (mAb2) 583<br /> Maximilian Woisetschl ager, Florian R uker, Geert C. Mudde, Gordana Wozniak–Knopp, Anton Bauer, and Gottfried Himmler</p>
<p>39.1 Introduction, 583</p>
<p>39.2 Immunoglobulin Fc as a Scaffold, 583</p>
<p>39.3 Design of Libraries Based on the Human IgG1 CH3 Domain, 584</p>
<p>39.4 TNF–a–Binding Fcab: Selection and Characterization of Fcab TNF353–2, 585</p>
<p>39.5 Conclusions and Future Perspectives, 588</p>
<p>Acknowledgments, 588</p>
<p>References, 589</p>
<p>40 Designer Fusion Modules for Building Multifunctional, Multivalent Antibodies, and Immunoconjugates: The Dock–and–Lock Method 591<br /> Edmund A. Rossi, David M. Goldenberg, and Chien–Hsing Chang</p>
<p>40.1 Introduction, 591</p>
<p>40.2 DDD/AD Modules Based on PKA and AKAP, 592</p>
<p>40.3 Advantages and Disadvantages of the DNL Method, 592</p>
<p>40.4 Fab–Based Modules, 593</p>
<p>40.5 IgG–AD2–Modules, 594</p>
<p>40.6 Hexavalent Antibodies, 595</p>
<p>40.7 More Antibody–Based–Modules and Multivalent Antibodies, 596</p>
<p>40.8 Nonantibody–Based DNL Modules, 597</p>
<p>40.9 IFN–a2b–DDD2 Module and Immunocytokines, 597</p>
<p>40.10 Variations on the DNLTheme, 598</p>
<p>40.11 Conclusions and Future Perspective, 599</p>
<p>References, 599</p>
<p>INDEX 603</p>