Analytical Techniques for Clinical Chemistry – Methods and Applications
Methods and Applications
Samenvatting
This resource details the role played by analytical techniques in clinical research, from fundamental studies to practical applications. Chapters report on the progress made in developing fit–for–purpose instrumentation, and identify continuing challenges for laboratory analytical techniques. The book opens with an overview of the regulatory framework around clinical lab analysis and then details applications including biomonitoring, diagnostics, food quality, biomarkers, drugs, and forensics. This handy reference provides an essential go–to while helping laboratory chemists reduce everyday problems and understand standardized lab techniques.
Specificaties
Inhoudsopgave
<p>PREFACE xxv</p>
<p>CONTRIBUTORS xxvii</p>
<p>PART I Exploring Fundamentals 1</p>
<p>1. Good Clinical Practice Principles: Legal Background and Applicability 3<br /> Umberto Filibeck, Angela Del Vecchio, and Fabrizio Galliccia<br /> 1.1. Introduction 4<br /> 1.2. Good Clinical Practice 4<br /> 1.3. Good Clinical Practice: Legal Background in the European Union 8<br /> 1.4. Good Clinical Practice: Applicability in the European Union 10<br /> 1.5. Good Clinical Practice and Bioequivalence Trials: GCP Inspections and Laboratories 13<br /> 1.6. Good Clinical Practice for Clinical Trials with Advanced Therapy Medicinal Product 20<br /> 1.7. Good Clinical Practice and Clinical Trials in Developing Countries 22</p>
<p>2. Clinical Chemistry and the Quest for Quality 29<br /> Sergio Caroli<br /> 2.1. Introduction 30<br /> 2.2. Quality Today 31<br /> 2.3. Conclusions 55</p>
<p>3. Uncertainty in Clinical Chemistry Measurements Including Preanalytical Variables 59<br /> Marit Sverresdotter Sylte, Tore Wentzel–Larsen, and Bjørn J. Bolann<br /> 3.1. Introduction 60<br /> 3.2. Analytical Uncertainty in Laboratory Results 62<br /> 3.3. Trueness and Traceability 67<br /> 3.4. Proficiency Testing 74<br /> 3.5. Biological Variations and Quality Goals 77<br /> 3.6. Reference Intervals 80<br /> 3.7. Estimating Preanalytical Uncertainty 83<br /> 3.8. Conclusions 92</p>
<p>4. The Role and Significance of Reference Values in the Identification and Evaluation of Trace Elements from Diet 97<br /> Pietro Apostoli and Maria Cristina Ricossa<br /> 4.1. Reference Values 97<br /> 4.2. Reference Values in Specific Groups of Population: The Children Case 100<br /> 4.3. Trace Elements and Diet 106<br /> 4.4. Arsenic 108<br /> 4.5. Mercury 110<br /> 4.6. Lead 112<br /> 4.7. Chromium 114<br /> 4.8. Cadmium 115<br /> 4.9. Conclusions 116</p>
<p>5. Sample Collection, Storage, and Pretreatment in Clinical Chemistry 127<br /> Andrew Taylor<br /> 5.1. Introduction 128<br /> 5.2. Collection Procedures 129<br /> 5.3. Storage 132<br /> 5.4. Pretreatment 133<br /> 5.5. Conclusions 136</p>
<p>6. Metal Toxicology in Clinical, Forensic, and Chemical Pathology 139<br /> Jose A. Centeno, Todor I. Todorov, Gijsbert B. van der Voet, and Florabel G. Mullick<br /> 6.1. Introduction 140<br /> 6.2. Biological Markers 140<br /> 6.3. Methodology for Trace Metal Ion Analysis in Clinical, Forensic, and Chemical Pathology 141<br /> 6.4. Case Studies of Relevance to Research and Diagnosis on Clinical Chemistry, Forensic Toxicology, and Chemical Pathology 144</p>
<p>PART II Selected Applications 157</p>
<p>7. Elemental Speciation in Clinical Sciences 159<br /> Douglas M. Templeton<br /> 7.1. Introduction 159<br /> 7.2. Selected Elements 167<br /> 7.3. Conclusions 172</p>
<p>8. The Role of Analytical Chemistry in the Safety of Drug Therapy 179<br /> Sandor Gorog<br /> 8.1. Drug Quality and Analysis: Their Role in Drug Safety 180<br /> 8.2. Methodological Aspects 189<br /> 8.3. The Role of Analytical Chemistry in Drug Research, Development, and Production 200<br /> 8.4. Future Trends 227</p>
<p>9. Analytical Techniques and Quality Control of Pharmaceuticals 245<br /> Fedele Manna, Francesca Rossi, and Rossella Fioravanti<br /> 9.1. Introduction 245<br /> 9.2. Sources of Impurities in Medicines 246<br /> 9.3. Validation of Analytical Methods 247<br /> 9.4. Analytical Approaches 250<br /> 9.5. Conclusions 253</p>
<p>10. Detection of Drugs in Biological Fluids for Antidoping Control 257<br /> Sabina Strano Rossi and Marcello Chiarotti<br /> 10.1. Introduction 257<br /> 10.2. Doping Control and Analytical Requirements 258<br /> 10.3. Confirmation Techniques 262<br /> 10.4. Conclusions 264</p>
<p>11. The Applicability of Plasma–Based Techniques to Biological Monitoring 269<br /> Ilse Steffan and Goran Vujicic<br /> 11.1. Introduction 269<br /> 11.2. ICP as a Spectrochemical Source 271<br /> 11.3. Element Analysis in Environmental and Biological Materials 276<br /> 11.4. Conclusions 292</p>
<p>12. Atomic Spectrometric Techniques for the Analysis of Clinical Samples 319<br /> Pilar Bermejo Barrera, Antonio Moreda Pineiro, and Marya del Carmen Barciela Alonso<br /> 12.1. Introduction 320<br /> 12.2. Analytical Techniques 320<br /> 12.3. Sample Preparation 347<br /> 12.4. Speciation Analysis 351<br /> 12.5. Quality Control in Trace Element Determination 355<br /> 12.6. Conclusions 358</p>
<p>13. Applications of ICP–MS in Human Biomonitoring Studies 367<br /> Peter Heitland and Helmut D. Koster<br /> 13.1. Introduction 367<br /> 13.2. Advantages and Limitations of Inductively Coupled Plasma Mass Spectrometry 368<br /> 13.3. Sample Collection and Storage 370<br /> 13.4. Sample Preparation 371<br /> 13.5. Human Biomonitoring by Inductively Coupled Plasma Mass Spectrometry 374<br /> 13.6. Trace Element Speciation and Metallomics 382<br /> 13.7. Determination of Stable Isotopes 384<br /> 13.8. Method Validation and Quality Assurance 384<br /> 13.9. Conclusions 387</p>
<p>14. Molybdenum in Biological Samples and Clinical Significance of Serum Molybdenum 397<br /> Munehiro Yoshida<br /> 14.1. Introduction 397<br /> 14.2. Analysis of Molybdenum in Biological Samples by Inductively Coupled Plasma Mass Spectrometry 398<br /> 14.3. Molybdenum in Food 400<br /> 14.4. Molybdenum in Human Samples 401<br /> 14.5. Clinical Significance of Serum and Plasma Mo 404<br /> 14.6. Conclusions 406</p>
<p>15. Application of Organometallic Speciation in Clinical Studies 409<br /> Bin He, Chungang Yuan, Jing Sun, and Guibin Jiang<br /> 15.1. Introduction 409<br /> 15.2. Arsenic 410<br /> 15.3. Mercury 422<br /> 15.4. Tin 432<br /> 15.5. Conclusions 441</p>
<p>16. Biosensors for Drug Analysis 455<br /> Daniela Deriu and Franco Mazzei<br /> 16.1. Introduction 455<br /> 16.2. Basic Concepts 456<br /> 16.3. Electrochemical Biosensors 460<br /> 16.4. Surface Plasmon Resonance 462<br /> 16.5. Biosensors for Drugs Analysis 465<br /> 16.6. Conclusions 471</p>
<p>17. Bioimaging of Metals and Proteomic Studies of Clinical Samples by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA–ICP–MS) 479<br /> J. Sabine Becker and J. Susanne Becker<br /> 17.1. Introduction 480<br /> 17.2. Analytical Approaches 481<br /> 17.3. Experimental Aspects of Imaging Laser Ablation Inductively Coupled Plasma Mass Spectrometry 485<br /> 17.4. Conclusions 498</p>
<p>18. Applications of LC–MS/MS in Clinical Laboratory Diagnostics 507<br /> Uta Ceglarek, Georg Martin Fiedler, and Joachim Thiery<br /> 18.1. Introduction 507<br /> 18.2. Current Applications and Future Perspectives 513<br /> 18.3. Liquid Chromatography–Tandem Mass Spectrometry Applications in Clinical Laboratories 520<br /> 18.4. Conclusions 528</p>
<p>19. Metabolomics Using UPLC/HPLC–Tandem Mass Spectrometry in Diagnosis and Research of Inherited Metabolic Diseases 535<br /> Willem Kulik and Andre B. P. van Kuilenburg<br /> 19.1. Introduction 536<br /> 19.2. Acylcarnitines 537<br /> 19.3. Acyl–Coenzyme A Thioesters 538<br /> 19.4. Amino Acids 540<br /> 19.5. Organic Acids 542<br /> 19.6. Purines and Pyrimidines 542<br /> 19.7. Bile Acids 544<br /> 19.8. Lipidomics 545<br /> 19.9. Carbohydrates 548<br /> 19.10. Neurotransmitters 548<br /> 19.11. Conclusions 549</p>
<p>20. Biomarkers of Oxidative Stress in Plasma and Urine 555<br /> Papasani V. Subbaiah<br /> 20.1. Introduction 556<br /> 20.2. Antioxidant Mechanisms and Assays 558<br /> 20.3. Concluding Remarks and Perspectives 583</p>
<p>21. The Use of X–Ray Techniques in Medical Research 595<br /> Imre Szaloki, Gyula Zaray, and Norbert Szoboszlai<br /> 21.1. Introduction 595<br /> 21.2. Physical Basis of XRF Analytical Methods 596<br /> 21.3. Basic Equipment and Setup for X–Ray Fluorescence Analysis 597<br /> 21.4. Quantification Approaches 606<br /> 21.5. Sample Preparation Techniques 609<br /> 21.6. Applications 610<br /> 21.7. Conclusions 617</p>
<p>PART III Future Trends 625</p>
<p>22. A New Tool Based on the Use of Stable Isotopes and Isotope Pattern Deconvolution (IPD)–ICP–MS for Nutritional and Clinical Studies 627<br /> Hector Gonzalez Iglesias, Maria Luisa Fernandez–Sanchez, and Alfredo Sanz–Medel<br /> 22.1. Introduction 627<br /> 22.2. Milk as Source of Trace Elements 628<br /> 22.3. Stable Isotopes and Trace Elements Metabolism 629<br /> 22.4. Isotope Pattern Deconvolution 631<br /> 22.5. Selenium Metabolism in Lactating Rats by Means of Stable Isotopes and Isotope Pattern Deconvolution 631<br /> 22.6. Determination of Selenium in Urine, Faeces, Serum, and Erythrocytes by Isotope Pattern Deconvolution Inductively Coupled Plasma Mass Spectrometry 634<br /> 22.7. Quantitative Speciation of Selenium in Urine, Serum, and Erythrocytes by High Performance Isotope Pattern Deconvolution Inductively Coupled Plasma Mass Spectrometry 637<br /> 22.8. An Application of Isotope Pattern Deconvolution to Clinical Studies 643<br /> 22.9. Conclusions 645</p>
<p>23. Breath Analysis: Analytical Methodologies and Clinical Applications 651<br /> Alessio Ceccarini, Fabio Di Francesco, Roger Fuoco, Silvia Ghimenti, Massimo Onor, Sara Tabucchi, and Maria Giovanna Trivella<br /> 23.1. Introduction 652<br /> 23.2. Sampling Methods 655<br /> 23.3. Analytical Techniques 658<br /> 23.4. Application of Breath Analysis 664<br /> 23.5. Exposure Assessment 675<br /> 23.6. Exhaled Breath Condensate 677<br /> 23.7. Conclusions 677</p>
<p>24. Proteo–Metabolomic Strategies in the Future of Drug Development 691<br /> Uwe Christians, Volker Schmitz, Jost Klawitter, and Jelena Klawitter<br /> 24.1. Introduction 692<br /> 24.2. The Principles of Molecular Marker Development 699<br /> 24.3. Technologies for Molecular Marker Development 718<br /> 24.4. Molecular Markers in Drug Development and Clinical Monitoring 737<br /> 24.5. Current Challenges 749</p>
<p>25. Basics in Laboratory Medicine: Past, Present, and Future 775<br /> Lorand A. Debreczeni, Anna Kovacsay, and Sandor Nagy<br /> 25.1. Introduction 776<br /> 25.2. Informatics 777<br /> 25.3. Global Standardization 778<br /> 25.4. Focus on the Individual 782<br /> 25.5. A Look into the Future 783</p>
<p>References 784</p>
<p>INDEX 787</p>