Semiparametric Theory and Missing Data

Specificaties
Gebonden, 388 blz. | Engels
Springer New York | 2006e druk, 2006
ISBN13: 9780387324487
Rubricering
Springer New York 2006e druk, 2006 9780387324487
Onderdeel van serie Springer Series in Statistics
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book summarizes current knowledge regarding the theory of estimation for semiparametric models with missing data, in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is both rigorous and intuitive, relying on geometric ideas to reinforce the intuition and understanding of the theory. These methods are then applied to problems with missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.

Specificaties

ISBN13:9780387324487
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:388
Uitgever:Springer New York
Druk:2006

Inhoudsopgave

to Semiparametric Models.- Hilbert Space for Random Vectors.- The Geometry of Influence Functions.- Semiparametric Models.- Other Examples of Semiparametric Models.- Models and Methods for Missing Data.- Missing and Coarsening at Random for Semiparametric Models.- The Nuisance Tangent Space and Its Orthogonal Complement.- Augmented Inverse Probability Weighted Complete-Case Estimators.- Improving Efficiency and Double Robustness with Coarsened Data.- Locally Efficient Estimators for Coarsened-Data Semiparametric Models.- Approximate Methods for Gaining Efficiency.- Double-Robust Estimator of the Average Causal Treatment Effect.- Multiple Imputation: A Frequentist Perspective.

Rubrieken

    Personen

      Trefwoorden

        Semiparametric Theory and Missing Data