Bioactive Polymeric Systems: An Overview.- Abstract.- 1. Introduction.- 2. Bioactive Polymeric Systems.- 2.1. What Is Bioactivity?.- 2.2. What Are Bioactive Polymeric Systems?.- 3. Classes of Bioactive Polymeric Systems.- 4. Polymeric Controlled-Release Systems.- 4.1. Erodible Systems.- 4.2. Diffusion-Controlled Systems.- 4.3. Mechanical Devices.- 4.4. Microcapsules.- 5. Biologically Active Polymers.- 5.1. Natural Polymers.- 5.2. Synthetic Polypeptides.- 5.3. Pseudoenzymes.- 5.4. Pseudonucleic Acids.- 5.5. Polymeric Drugs.- 6. Immobilized Bioactive Materials.- 6.1. Immobilized Enzymes.- 6.2. Other Immobilized Bioagents.- 7. Examples of Bioactive Polymeric Systems.- 7.1. Many Uses for Any System.- 7.2. Many Solutions for Any Problem.- 8. Summary.- 9. References.- 2. Biocompatibility of Bioactive Polymeric Systems.- 1. Types of Bioactive Polymeric Systems.- 2. Biocompatibility —General Considerations.- 3. Primary Acute Toxicity Screening.- 4. Tissue-Interaction Studies.- 5. Summary.- 6. References.- 3. Controlled-Release Pesticides: A Historical Summary and State of the Art.- Abstract.- 1. Antifouling.- 1.1. Toxic Paints.- 1.2. Organotin Antifoulants.- 1.3. Antifouling Rubber.- 1.4. Extension of the Concept.- 1.5. Further Developments in Antifouling Paint Technology.- 1.6. Mixed-Agent Paints.- 1.7. Notes on Antifouling Paint Technology.- 1.8. Organometallic Polymers.- 2. Molluscicidal Elastomers.- 2.1. Snail-Borne Parasitic Disease.- 2.2. Controlled-Release Organotin Molluscicides.- 2.3. Technology Based upon Organotin/Elastomer Development.- 2.4. Organotin Properties: Toxicology and Chemodynamics.- 2.5. Controlled-Release Cercariacides.- 2.6. Other Controlled-Release Molluscicides.- 2.7. Controlled-Release Copper Sulfate Elastomers.- 2.8. Critique.- 2.9. Bait Molluscicides.- 3. Controlled-Release Insecticidal Elastomers.- 4. Bactericidal and Fungicidal Elastomers.- 5. Herbicidal Elastomeric Formulations.- 6. Controlled-Release Thermoplastic Systems: An Overview.- 7. Early Concepts.- 8. Carrier Systems: Insecticides.- 8.1. Insecticidal Strip.- 8.2. Flea Collars.- 8.3. Insecticidal Roach Tape and Related Inventions.- 9. Insecticidal and Molluscicidal Monoliths.- 9.1. The Porosigen Concept and Controlled Release.- 10. Thermoplastic Aquatic Herbicide Systems.- 11. Controlled Release through Pendent Substitution.- 12. Controlled-Release Juvenile Hormones.- 13. Monoliths in Agriculture.- 14. Agricultural Uses of Porosigen-Containing Monoliths.- 15. Microencapsulation.- 16. Pendent Systems in Agriculture.- 17. Pheromones in Agriculture.- 18. Insecticidal Carrier Systems.- 19. Other Release Systems.- References.- 4. Controlled Release of Antifertility Agents.- Abstract.- 1. Introduction.- 2. Injectables.- 2.1. Suspensions.- 2.2. Biodegradable Microspheres.- 2.3. Polymer-Steroid Complexes.- 3. Subdermal Implants.- 3.1. Nonbiodegradable Implants.- 3.2. Biodegradable Implants.- 4. IUDs.- 4.1. Nonmedicated IUDs.- 4.2. Copper-Bearing IUDs.- 4.3. Steroid-Releasing IUDs.- 5. Intravaginal Devices.- 6. Intracervical Devices.- 7. Oral Contraceptives.- 8. Topical Application.- 9. Intranasal Applications.- 10. Transcervical Device.- 11. Immunological Response.- References.- 5. Controlled Release and Plant-Growth Regulators.- Abstract.- 1. Introduction.- 2. Plant-Growth Regulators.- 2.1. Auxins.- 2.2. Gibberellins.- 2.3. Cytokinins.- 2.4. Inhibitors.- 2.5. Ethylene Gas.- 3. The ControUed-Release Concept.- 3.1. Physical Methods.- 3.2. Chemical Methods.- 4. The Present State of the Art of Controlled-Release Plant-Growth Regulators.- 5. The Future.- 5.1. Long-life Crops.- 5.2. Seasonal Crops.- 5.3. Environmental Vigor.- 5.4. Improving Herbicide and Fertilizer Efficiency.- 5.5. Promotion of Early Germination.- 5.6. Protection from Degradation.- 6. Conclusions.- References.- 6. Hydrogels for Controlled Drug Release.- Abstract.- 1. Introduction.- 2. Reservoir Devices.- 3. Monolithic Devices (Dissolved Systems).- 4. Monolithic Devices (Drug-Dispersed Systems).- 5. Monolithic Devices with Barrier Layer.- 6. Novel Drug Delivery Systems.- References.- 7. Biodegradable Drug Delivery Systems Based on Polypeptides.- Abstract.- 1. Introduction.- 1.1. Historical Background.- 1.2. Advantages and Disadvantages.- 1.3. Chemical Types.- 2. Poly (?-Amino Acids).- 3. Synthesis of Poly (?-Amino Acids) and Drug Conjugates.- 3.1. Polymer Backbone.- 3.2. Attachment of Norethindrone onto Poly (L-Glutamic Acid).- 3.3. Attachment of Spacer Groups onto Poly (L-Glutamic Acid).- 3.4. Attachment of Bioactive Steroids onto Spacer Groups.- 3.5. Other Polymer/Drug Conjugates Based on Poly(Hydroxyalkylglutamines).- 3.6. Copolymerization of L-Glutamic Acid and l-Valine.- 3.7. Copolymer/Drug Conjugates.- 4. Dosage-Form Formulation and Drug Release.- 4.1. Dosage Forms.- 4.2. In vitro Drug Release.- 4.3. In vivo Drug Release.- 5. Toxicity Studies.- 6. Other Biodegradable Polymer/Drug Conjugates.- 7. Drug Targeting.- 8. Conclusions.- References.- 8. Controlled-Release Animal Repellents in Forestry.- Abstract.- 1. Introduction.- 1.1. Animal Damage in Forestry.- 1.2. Repellent Systems.- 2. Selenium as a Timed-Release Systemic Repellent.- 2.1. Biochemistry of Selenium.- 2.2. Formation of Timed-Release Browse Deterrents.- 3. Characterizing the Performance of Controlled-Release Animal Repellents.- 3.1. Nature of the Problem.- 3.2. Mathematical Analysis.- 4. Future Impact of Bioactive Polymers in Forestry.- 4.1. Animal Repellents.- 4.2. Other Applications.- References.- 9. Affinity Chromatography.- 1. Introduction.- 2. The Constituents of the Ideal Affinity Adsorbent.- 2.1. The Matrix.- 2.2. The Spacer Molecule.- 2.3. The Ligand.- 3. The Synthesis of Affinity Adsorbents.- 4. The Chromatographic Properties of Affinity Adsorbents.- 4.1. Adsorption of Complementary Biomolecules.- 4.2. Bioselective Elution.- 5. Applications of Affinity Chromatography.- 5.1. Protein Purification.- 5.2. Purification of Supramolecular Structures.- 5.3. Isoenzyme Resolution.- 5.4. Removal of Contaminants.- 5.5. Resolution of Mutant Proteins.- 5.6. Concentration of Dilute Solutions.- 5.7. Resolution of Chemically Modified Staphylococcal Nuclease from Native Proteins.- 5.8. Estimation of Dissociation Constants.- 5.9. Studies on Enzyme Kinetic Mechanisms.- 5.10. Clinical Applications.- 6. High-Performance Liquid Affinity Chromatography (HPLAC).- 7. Conclusions.- References.- 10. Application of Radiation Grafting in Reagent Insolubilization.- Abstract.- 1. Introduction.- 2. Principle of Radiation Grafting Insolubilization Method.- 3. Radiation Grafting Procedures.- 3.1. Pre-Irradiation Techniques for Grafting.- 3.2. Mutual or Simultaneous Radiation Grafting Method.- 4. Typical Experimental Grafting Methods.- 4.1. Pre-Irradiation Grafting.- 4.2. Mutual or Simultaneous Grafting.- 5. Choice of Grafting Method for Insolubilization Reactions.- 6. Variables Influencing Simultaneous Grafting.- 6.1. Role of Solvent.- 6.2. Significance of Dose Rate and Dose.- 7. Additive Effects in Grafting.- 7.1. Acid Effects in Grafting.- 7.2. Polyfunctional Monomers as Additives in Grafting.- 7.3. Combined Effects of Acid and Polyfunctional Monomers.- 7.4. Miscellaneous Additives to Reduce Homopolymerization.- 8. Application of Radiation Grafting to Enzyme Insolubilization.- 9. Application of Grafting to Heterogenization of Complexes.- 10. Application of Grafting to Insolubilization of Analytical Reagents.- 11. General Conclusions.- References.- 11. Immobilized Enzymes.- Abstract.- 1. Introduction.- 2. Supports.- 3. Methods of Immobilization.- 3.1. Adsorption.- 3.2. Cross-linking.- 3.3. Adsorption-Cross-linking.- 3.4. Covalent Bonding.- 3.5. Entrapment.- 3.6. Microencapsulation.- 3.7. Electrochemical Methods.- 4. Properties of Immobilized Enzymes.- 4.1. Physical Properties.- 4.2. Chemical Properties.- 4.3. Stability.- 4.4. Specificity.- 5. Uses of Immobilized Enzymes.- 5.1. Industrial Applications.- 5.2. Analytical Applications.- 5.3. Structure-Function Studies.- 5.4. Therapeutic Applications.- 6. Future Directions.- References.- 12. Biomedical Polypeptides—A Wellspring of Pharmaceuticals.- Abstract.- 1. Introduction.- 2. Methods of Peptide Synthesis.- 2.1. Chemical Synthesis.- 2.2. Biological Synthesis.- 2.3. Semisynthesis.- 3. Structural and Conformational Specificity.- 3.1. Peptide Structure: Polyamide Backbone with Various Side Chains.- 3.2. The Contribution of Sequence to Biological Specificity.- 3.3. Contribution of Peptide Conformation to Biologic Specificity.- 4. Modifications of Peptides to Enhance Therapeutic Utility.- 4.1. Motives for Peptide Modification.- 4.2. Enhancement of Resistance to Proteolytic Degradation.- 4.3. Enhancement of Selectivity by Chain Shortening to Remove Undesirable Message Sequences.- 4.4. Enhancement of Potency and Selectivity by Side-Chain Modification.- 4.5. Enhancement of Potency and Selectivity by Peptide-Backbone Modification to Promote Bioactive Conformation.- 4.6. Enhancement of Potency and Selectivity with Peptide Oligomers.- 4.7. Enhancement of Potency with Peptide Analogues Displaying Superior Membrane Permeability.- 5. Physicochemical Vehicles to Modulate Proteolysis and Absorption.- 6. Modes of Pharmacologic Control of Endogenous Peptidergic Processes.- 6.1. Inhibition of Ribosomal Translation.- 6.2. Modulation of Posttranslational Processing.- 6.3. Modulation of Peptide Release: Peptide Release Factors, Release Inhibitors, and Their Antagonists.- 6.4. Enhancement of Endogenous Peptide Levels by Blocking Degradation.- 6.5. Feedback Inhibitors.- 6.6. Common Dosage Problems with Endogenous Peptide Modulation.- 7. Peptide Analogues with Increased Duration of Action.- 8. Types of Therapeutic Biomedical Polypeptides.- 8.1. Peptide Hormones and Neurotransmitters.- 8.2. Peptidase and Proteinase Inhibitors.- 8.3. Antigenic Peptides as Synthetic Vaccines.- 8.4. Peptide Ionophoric Antibiotics.- 8.5. Peptide Chemoattractant Immunostimulants.- 8.6. Flavorful and Poisonous Peptides.- 9. Conclusion.- References.- 13. Drug Delivery with Protein and Peptide Carriers.- Abstract.- 1. Introduction.- 2. Preparation of Drug-Carrier Complexes.- 3. Chemical and Biological Properties.- 4. Mechanisms of Action and Pharmacological Properties.- 5. Conclusion.- References.- 14. Biomedical Applications of Polysaccharides.- Abstract.- 1. Structure and Physical Properties.- 2. Applications in Biochemistry.- 3. Uses as Surface-Acting Drugs and in Medicinal Formulations.- 4. Uses in Blood, Body Fluids, and Biomaterials, and in Trauma.- 5. Physiological Functions, Immunological Relationships, and Vaccines.- 6. Textiles, Membranes, Microencapsulation, Controlled-Release Agents, and Targeted Drugs.- References.- 15. Interferon Induction by Polymers.- 1. Introduction.- 2. Types of Polymers.- 2.1. Polycarboxylic Acids.- 2.2. Polysaccharides.- 2.3. Nucleic Acids.- 3. Effect of Size of Components on Effectiveness of Poly(ICLC).- 3.1. Molecular Characteristics of Poly(ICLC) as a Function of the Component Size.- 4. Effect of Inducers on the Immune System-Antibody Production.- 5. Effects on Cell-Mediated Immunity.- 6. Interferon Inducers and Human Disease.- 6.1. Polyinosinic-Polycytidylic Acid [Poly(I)-Poly(C)].- 6.2. Polyinosinic-Polycytidylic Acid-Poly-L-Lysine [Poly(ICLC)].- References.- 16. Functionality and Applicability of Synthetic Nucleic Acid Analogues.- Abstract.- 1. Introduction.- 2. Synthesis and Properties of Polyamino Acids Containing Nucleic Acid Bases.- 2.1. Polymer Synthesis.- 2.2. Conformations of the Polymers.- 2.3. Polymer-Polymer Interaction between Nucleic Acid Base-Substituted Poly-L-Lysines.- 2.4. Polymer-Polymer Interactions between Nucleic Acid Base-Substituted Poly-L-Lysine and Other Synthetic Polymers.- 2.5. Isopoly-L-Lysine Having Pendant Nucleic Acid Bases.- 3. Photochemistry of the Polymers Containing Thymine Bases.- 3.1. Fundamental Study on Photodimerization.- 3.2. Effect of Complementary Bases.- 3.3. Photoreaction of the Polymers Having Cyanouracil Units.- 4. Synthesis and Properties of Polyethyleneimine Derivatives Containing Nucleic Acid Bases.- 4.1. Polymer Synthesis.- 4.2. Interaction of the Graft Polymers.- 4.3. Further Studies on Polyethyleneimine Having Thymine Bases.- 5. Functionality and Applicability of the Supported Nucleic Acid Bases as Polymeric Reagents.- 6. Cyclic Derivatives of Pyrimidine Bases.- 7. Conclusion.- References.- 17. Enzyme-Mimetic Polymers.- Abstract.- 1. Introduction.- 2. Polymer Catalysts That Bind the Substrate.- 2.1. Polymer Catalyst Having a Substrate-Binding and a Catalytic Group.- 2.2. Reactions Occurring under Circumstances Regulated by Polymers.- 2.3. Stereospecific Micellar Reactions.- 2.4. Chemical Reactions in Organized Molecular Assemblies.- 2.5. Polymeric Coenzymes.- 2.6. Metalloenzyme Models.- 3. Intramolecular Cooperation between Binding Site and Catalytic Site along a Polymer Chain.- 3.1. Linear Polymer Catalysts.- 3.2. Cyclic Polymer Catalysts.- 3.3. Intramolecular Catalysis.- 4. Multifunctional and Multiple Polymer Catalysts.- 4.1. Bifunctional Catalyses.- 4.2. Polymeric Multiple Catalysts.- 4.3. Cyclic Multiple Catalysts.- 5. Intrachain Reactions Proceeding on a Polymer Chain.- 5.1. Intrachain Reactions among Functional Groups Distributed along a Polymer Chain.- 5.2. Intrachain Reaction of Pairs of Functional Groups Attached to the Chain Ends — Statistical Treatments.- 5.3. Intrachain Reactions of Pairs of Functional Groups Attached to the Chain Ends —Dynamic Treatments.- Symbols.- References.- 18. Bioactive Carboxylic Acid Polyanions.- Abstract.- 1. Introduction.- 2. Types of Carboxylic Acid Polymers Evaluated for Biological Activity.- 2.1. Homopolymers.- 2.2. Copolymers of Maleic Anhydride.- 2.3. Other Carboxylic Acid Copolymers.- 2.4. Carboxylic Acid-Half-Amide and Imide Polymers.- 3. Effect of Molecular Weight and Structure of Polycarboxylic Acid Polymers on Biological Activity.- 4. Macrophage Activation by Polycarboxylic Acid Polymers.- 5. Distribution of Polyanions in the Host.- 6. Cellular Uptake of Polycarboxylic Acid Polymers.- 7. Clinical Effects of Polycarboxylic Acid Polymers.- 8. Summary.- References.- 19. Polymeric Antitumor Agents on a Molecular and Cellular Level.- 1. Introduction.- 1.1. Definition: Molecular Level — Cellular Level.- 1.2. Tumor Cells and Tumor Therapy.- 1.3. The Carrier Concept.- 2. Antitumor Agents on a Molecular Level.- 2.1. Model for a Polymeric Drug Carrier.- 2.2. How Do Macromolecules Enter Cells?.- 2.3. Polymeric Carriers.- 2.4. Affinity Chemotherapy.- 2.5. From Research Lab to Clinic?.- 3. Polymeric Antitumor Agents on a Cellular Level.- 3.1. Death of a Tumor Cell-How To Duplicate this Event.- 3.2. Stable Synthetic Bilayer Membranes via Polymerization.- 3.3. How To Improve Biological Functionality.- 4. Conclusion.- References.- 20. Biological Activities of cis-Dichlorodiamineplatinum II and Its Derivatives.- Abstract.- 1. Introduction.- 2. General Discussion.- 3. Structural Requirements.- 4. Mode of Activity.- 5. Animal and Human Toxicity.- 6. Antineoplastic Effects.- 7. Toxicity Minimization.- 8. Rationale.- 9. Synthesis.- 10. Physical and Structural Characterization.- 11. Biological Characterization.- Abbreviations.- References.- 21. Iron-Complexing Bioactive Polymers.- Abstract.- 1. Introduction.- 2. Medical Problems of Iron Overload.- 3. Naturally Occurring Iron Chelators.- 4. Programs for the Development of New Iron Chelators.- 5. Development of Polymeric Iron Chelators for Iron Chelation Therapy.- 5.1. Hydroxamic Acid Type.- 5.2. Phenol Type.- 5.3. Catechol Type.- 6. Selection of Iron Chelating Polymers for Potential Use in Iron Chelation Therapy.- 7. Iron Chelating Ability of Polymeric Iron Chelators.- 8. Bioassays of Iron Chelating Drugs.- 9. Results of Bioassays for Polymeric Iron Chelators.- 10. Organizations Supporting the Development of New Iron Chelators.- References.- 22. Biological Activities and Medical Applications of Metal-Containing Macromolecules.- Abstract.- 1. Introduction.- 2. Philosophy.- 3. Synthesis.- 4. Targeting.- 5. Modes of Bioactivity.- References.