Bayesian Analysis with Excel and R

Specificaties
Paperback, blz. | Engels
Pearson Education | e druk, 2023
ISBN13: 9780137580989
Rubricering
Pearson Education e druk, 2023 9780137580989
Verwachte levertijd ongeveer 8 werkdagen

Samenvatting

Leverage the full power of Bayesian analysis for competitive advantage

Bayesian methods can solve problems you can't reliably handle any other way. Building on your existing Excel analytics skills and experience, Microsoft Excel MVP Conrad Carlberg helps you make the most of Excel's Bayesian capabilities and move toward R to do even more.

Step by step, with real-world examples, Carlberg shows you how to use Bayesian analytics to solve a wide array of real problems. Carlberg clarifies terminology that often bewilders analysts, and offers sample R code to take advantage of the rethinking package in R and its gateway to Stan.

As you incorporate these Bayesian approaches into your analytical toolbox, you'll build a powerful competitive advantage for your organization—and yourself. Explore key ideas and strategies that underlie Bayesian analysis Distinguish prior, likelihood, and posterior distributions, and compare algorithms for driving sampling inputs Use grid approximation to solve simple univariate problems, and understand its limits as parameters increase Perform complex simulations and regressions with quadratic approximation and Richard McElreath's quap function Manage text values as if they were numeric Learn today's gold-standard Bayesian sampling technique: Markov Chain Monte Carlo (MCMC) Use MCMC to optimize execution speed in high-complexity problems Discover when frequentist methods fail and Bayesian methods are essential—and when to use both in tandem

Specificaties

ISBN13:9780137580989
Taal:Engels
Bindwijze:Paperback

Inhoudsopgave

<p>Preface<br><strong>Chapter 1</strong> Bayesian Analysis and R: An Overview<br> Bayes Comes Back<br> About Structuring Priors<br> Watching the Jargon<br> Priors, Likelihoods, and Posteriors<br> &nbsp;&nbsp;&nbsp; The Prior<br> &nbsp;&nbsp;&nbsp; The Likelihood<br> Contrasting a Frequentist Analysis with a Bayesian<br> &nbsp;&nbsp;&nbsp; The Frequentist Approach<br> &nbsp;&nbsp;&nbsp; The Bayesian Approach<br> Summary<br><strong>Chapter 2</strong> Generating Posterior Distributions with the Binomial Distribution<br> Understanding the Binomial Distribution<br> Understanding Some Related Functions<br> Working with R's Binomial Functions<br> &nbsp;&nbsp;&nbsp; Using R's dbinom Function<br> &nbsp;&nbsp;&nbsp; Using R's pbinom Function<br> &nbsp;&nbsp;&nbsp; Using R's qbinom Function<br> &nbsp;&nbsp;&nbsp; Using R's rbinom Function<br> Grappling with the Math <br> Summary<br><strong>Chapter 3</strong> Understanding the Beta Distribution<br> Establishing the Beta Distribution in Excel<br> Comparing the Beta Distribution with the Binomial Distribution<br> Decoding Excel's Help Documentation for BETA.DIST<br> Replicating the Analysis in R<br> &nbsp;&nbsp;&nbsp; Understanding dbeta<br> &nbsp;&nbsp;&nbsp; Understanding pbeta<br> &nbsp;&nbsp;&nbsp; Understanding qbeta<br> &nbsp;&nbsp;&nbsp; About Confidence Intervals<br> &nbsp;&nbsp;&nbsp; Applying qbeta to Confidence Intervals<br> &nbsp;&nbsp;&nbsp; Applying BETA.INV to Confidence Intervals<br> Summary<br><strong>Chapter 4</strong> Grid Approximation and the Beta Distribution<br> More on Grid Approximation<br> &nbsp;&nbsp;&nbsp; Setting the Prior<br> Using the Results of the Beta Function<br> Tracking the Shape and Location of the Distribution<br> Inventorying the Necessary Functions<br> &nbsp;&nbsp;&nbsp; Looking Behind the Curtains<br> Moving from the Underlying Formulas to the Functions<br> Comparing Built-in Functions with Underlying Formulas<br> Understanding Conjugate Priors <br> Summary<br><strong>Chapter 5</strong> Grid Approximation with Multiple Parameters<br> Setting the Stage<br> &nbsp;&nbsp;&nbsp; Global Options<br> &nbsp;&nbsp;&nbsp; Local Variables<br> &nbsp;&nbsp;&nbsp; Specifying the Order of Execution<br> &nbsp;&nbsp;&nbsp; Normal Curves, Mu and Sigma<br> &nbsp;&nbsp;&nbsp; Visualizing the Arrays<br> &nbsp;&nbsp;&nbsp; Combining Mu and Sigma<br> Putting the Data Together<br> &nbsp;&nbsp;&nbsp; Calculating the Probabilities<br> &nbsp;&nbsp;&nbsp; Folding in the Prior<br> &nbsp;&nbsp;&nbsp; Inventorying the Results<br> &nbsp;&nbsp;&nbsp; Viewing the Results from Different Perspectives<br> Summary<br><strong>Chapter 6</strong> Regression Using Bayesian Methods<br> Regression a la Bayes<br> Sample Regression Analysis<br> Matrix Algebra Methods<br> Understanding quap<br> Continuing the Code<br> A Full Example<br> Designing the Multiple Regression<br> Arranging a Bayesian Multiple Regression<br> Summary<br><strong>Chapter 7</strong> Handling Nominal Variables<br> Using Dummy Coding <br> Supplying Text Labels in Place of Codes<br> Comparing Group Means<br> Summary<br><strong>Chapter 8</strong> MCMC Sampling Methods<br> Quick Review of Bayesian Sampling<br> &nbsp;&nbsp;&nbsp; Grid Approximation<br> &nbsp;&nbsp;&nbsp; Quadratic Approximation<br> &nbsp;&nbsp;&nbsp; MCMC Gets Up To Speed<br> A Sample MCMC Analysis<br> &nbsp;&nbsp;&nbsp; ulam's Output<br> &nbsp;&nbsp;&nbsp; Validating the Results<br> &nbsp;&nbsp;&nbsp; Getting Trace Plot Charts<br> Summary and Concluding Thoughts<br><strong>Appendix</strong> Installation Instructions for RStan and the rethinking Package on the Windows Platform<br><strong>Glossary</strong></p> <p>&nbsp;</p> <p><strong>Downloadable Bonus Content</strong></p> <p>Excel Worksheets <br> Book: Statistical Analysis: Microsoft Excel 2016 (PDF)</p> <p>&nbsp;</p> <p>&nbsp;</p> <p>9780137580989&nbsp;&nbsp;&nbsp; TOC&nbsp;&nbsp;&nbsp; 10/24/2022</p> <p>&nbsp;</p>

Rubrieken

    Personen

      Trefwoorden

        Bayesian Analysis with Excel and R