<p>Section A: Theory and mechanism</p> <p>1.1 Thermoelectric properties beyond the standard Boltzmann model in oxides: A focus on the ruthenates</p> <p>Florent Pawula, Ramzy Daou, Sylvie He'bert, and Antoine Maignan</p> <p>1.2 Electron correlation</p> <p>Ichiro Terasaki</p> <p>1.3 Thermal transport by phonons in thermoelectrics</p> <p>Yuxuan Liao, Harsh Chandra, and Junichiro Shiomi</p> <p>Section B: Materials</p> <p>2.1 Bismuth telluride</p> <p>Yu Pan and Jing-Feng Li</p> <p>2.2 Thermoelectric properties of skutterudites</p> <p>Ctirad Uher</p> <p>2.3 Recent developments in half-Heusler thermoelectric materials </p> <p>Jan-Willem G. Bos</p> <p>2.4 Pseudogap engineering of Fe2VAl-based thermoelectric Heusler compounds</p> <p>Yoichi Nishino</p> <p>2.5 Zintl phases for thermoelectric applications</p> <p>Susan M. Kauzlarich, Kasey P. Devlin, and Christopher J. Perez</p> <p>2.6 High-performance sulfide thermoelectric materials</p> <p>Anthony V. Powell</p> <p>2.7 Synthetic minerals tetrahedrites and colusites for thermoelectric power generation</p> <p>Koichiro Suekuni, Michihiro Ohta, Toshiro Takabatake, and Emmanuel Guilmeau</p> <p>2.8 High-performance thermoelectrics based on metal selenides</p> <p>Tanmoy Ghosh, Moinak Dutta, and Kanishka Biswas</p> <p>2.9 Materials development and module fabrication in highly efficient lead tellurides</p> <p>Michihiro Ohta, Priyanka Jood, Raju Chetty, and Mercouri G. Kanatzidis</p> <p>2.10 Oxide thermoelectric materials: Compositional, structural, microstructural, and processing challenges to realize their potential</p> <p>Slavko Bernik</p> <p>2.11 Oxide thermoelectric materials</p> <p>Dursun Ekren, Feridoon Azough, and Robert Freer</p> <p>2.12 Thermoelectric materials-based on organic semiconductors</p> <p>Qingshuo Wei, Masakazu Mukaida, Kazuhiro Kirihara, and Takao Ishida</p> <p>2.13 Organic thermoelectric materials and devices</p> <p>Hong Wang and Choongho Yu</p> <p>2.14 Thermoelectric materials and devices based on carbon nanotubes</p> <p>Yoshiyuki Nonoguchi</p> <p>2.15 Higher manganese silicides</p> <p>Yuzuru Miyazaki</p> <p>2.16 Silicide materials: Thermoelectric, mechanical properties, and durability for Mg-Si and Mn-Si </p> <p>Tsutomu Iida, Ryo Inoue, Daishi Shiojiri, Naomi Hirayama, Noriaki Hamada, and Yasuo Kogo</p> <p>2.17 Highly efficient Mg2Si-based thermoelectric materials: A review on the micro- and nanostructure properties and the role of alloying</p> <p>Georgios S. Polymeris, Euripides Hatzikraniotis, and Theodora Kyratsi</p> <p>Section C: Devices and modules</p> <p>3.1 Segmented modules</p> <p>Shengqiang Bai, Qihao Zhang, and Lidong Chen</p> <p>3.2 Power generation performance of Heusler Fe2VAl modules</p> <p>Masashi Mikami</p> <p>3.3 Microthermoelectric devices using Si nanowires</p> <p>Takanobu Watanabe</p> <p>3.4 Measurement techniques of thermoelectric devices and modules</p> <p>Hsin Wang and Shengqiang Bai</p> <p>3.5 Evaluation method and measurement example of thermoelectric devices and modules</p> <p>Satoaki Ikeuchi</p> <p>Section D: Applications</p> <p>4.1 Thermoelectric air cooling</p> <p>Kashif Irshad</p> <p>4.2 Air-cooled thermoelectric generator</p> <p>Ryoji Funahashi, Tomoyuki Urata, Yoko Matsumura, Hiroyo Murakami, and Hitomi Ikenishi</p> <p>4.3 Prospects of TEG application from the thermoelectric cooling market</p> <p>Hirokuni Hachiuma</p> <p>4.4 Thermoelectric applications in passenger vehicles</p> <p>Doug Crane</p> <p>4.5 Thermoelectric generators for full-sized trucks and sports utility vehicles</p> <p>James R Salvador</p> <p>4.6 Thermoelectric generation using solar energy</p> <p>Sajjad Mahmoudinezhad and Alireza Rezaniakolaei</p> <p>4.7 Development and demonstration of outdoor-applicable thermoelectric generators for IoT applications</p> <p>Kanae Nakagawa and Takashi Suzuki</p>